Fundamentals of Fluid Flow in Porous Media

At the end of this module, you will:

● Be familiar with the differential equations used for fluid flow in porous media.
 — The gas flow diffusivity equations (Eq. 5.39, 5.47, and 5.59).
 — The "liquid form" of the "dimensionless" diffusivity equation (Eq. 5.119).
● Be familiar with the solutions for these differential equations.
 — The solution for a well in an infinite-acting reservoir.
 — The solution for a well undergoing pseudosteady-state flow.
 — The solution for a well with wellbore storage and skin effects.
● Be familiar with the concept of the "radius of investigation."
● Be familiar with the "skin factor" used to represent non-ideal behavior.
● Be familiar with "wellbore storage" effects which can affect pressure behavior.
● Be familiar with the "Horner" approximation for production time in a buildup test.
● Be familiar with the van Everdingen-Hurst Solutions to the Diffusivity Equation.

Representative Elementary Volume

Porosity

Domain of microscopic inhomogeneity

Domain of possible macroscopic inhomogeneity

Inhomogeneous media

Homogeneous medium

Range for \(U_0 \)

\(U_{\text{min}} \) \hspace{2cm} \(U_{\text{max}} \)

Volume \(U \)
(Very) Basic Flow in Porous Media

\[\frac{d\Delta P}{2 \rho L V^2} = f \]

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sand</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bradford</td>
<td>42.5</td>
</tr>
<tr>
<td>2</td>
<td>Bradford</td>
<td>42.3</td>
</tr>
<tr>
<td>3</td>
<td>3rd Venango</td>
<td>16.9</td>
</tr>
<tr>
<td>4</td>
<td>Ceramic A</td>
<td>37.0</td>
</tr>
<tr>
<td>5</td>
<td>Robinson</td>
<td>20.3</td>
</tr>
<tr>
<td>6</td>
<td>Ceramic B</td>
<td>37.8</td>
</tr>
<tr>
<td>7</td>
<td>Woodbine</td>
<td>15.7</td>
</tr>
<tr>
<td>8</td>
<td>Wilcox</td>
<td>15.9</td>
</tr>
<tr>
<td>9</td>
<td>3rd Venango</td>
<td>11.9</td>
</tr>
<tr>
<td>10</td>
<td>Robinson</td>
<td>19.5</td>
</tr>
<tr>
<td>11</td>
<td>Robinson</td>
<td>18.4</td>
</tr>
<tr>
<td>12</td>
<td>3rd Venango</td>
<td>22.3</td>
</tr>
<tr>
<td>13</td>
<td>Wilcox</td>
<td>16.5</td>
</tr>
<tr>
<td>14</td>
<td>Warren</td>
<td>15.2</td>
</tr>
<tr>
<td>15</td>
<td>3rd Venango</td>
<td>21.4</td>
</tr>
<tr>
<td>16</td>
<td>Robinson</td>
<td>20.6</td>
</tr>
<tr>
<td>17</td>
<td>Ceramic C</td>
<td>33.2</td>
</tr>
<tr>
<td>18</td>
<td>3rd Venango</td>
<td>21.9</td>
</tr>
<tr>
<td>19</td>
<td>Woodbine</td>
<td>23.8</td>
</tr>
<tr>
<td>20</td>
<td>Lead shot</td>
<td>34.5</td>
</tr>
<tr>
<td>21</td>
<td>20-30 Ottawa</td>
<td>34.5</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>28.8</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>22.1</td>
</tr>
<tr>
<td>24</td>
<td>Flint</td>
<td>39.5</td>
</tr>
<tr>
<td>25</td>
<td>Ottawa</td>
<td>30.9</td>
</tr>
</tbody>
</table>

\[R = \frac{dvp}{\mu} \]

Cornell and Katz Unified Flow Relation for Porous Media

Gas Diffusivity Equation (General Formulation)

- **Diffusivity Equations for a "Dry Gas":**

 - **General Form for Gas:**
 \[\nabla \cdot \left[\frac{p}{\mu_g z} \nabla p \right] = \frac{\phi c_t}{k} \frac{p}{z} \frac{\partial p}{\partial t} \n\]

 - **Diffusivity Relations:**
 - Pseudopressure/Time:
 \[\nabla^2 p_p = \frac{\phi \mu_g c_t}{k} \frac{\partial p_p}{\partial t} \]
 - Pseudopressure/Pseudotime:
 \[\nabla^2 p_p = \frac{\phi}{k (\mu_g c_t)} p_n \frac{\partial t_p}{\partial t_a} \]

 - **Definitions:**
 - **Pseudopressure:**
 \[p_{pg} = \left[\frac{\mu_g z}{p} \right] p_n \int_{p_{base}}^{p} \frac{p}{\mu_g z} dp \]
 - **Pseudotime:**
 \[t_a = \left[\mu_g c_t \right] p_n \int_{0}^{t} \frac{1}{\mu_g (p)c_t (p)} dt \]
Gas Diffusivity Equation (General Formulation)

\[t_a = \left[\mu_g c_t \right]_n \int_0^t \frac{1}{\mu_g(p)c_t(p)} \, dt \]

- "Dry Gas" Pseudotime Condition: (\(\mu_g c_g \) vs. \(p \))
 - Concept: IF \(\mu_g c_g \approx \) constant, THEN pseudotime NOT required.
 - \(\mu_g c_g \) is NEVER constant — pseudotime is always required (for liquid eq.).
 - However, can generate numerical solution for gas cases (no pseudotime).
Gas Diffusivity Equation (General Formulation)

"Dry Gas" — $p/(\mu_g z)$ vs. p

- "Dry Gas" PVT Properties: $(p/(\mu_g z)$ vs. p)
 - Basis for the "pressure" approximation (i.e., use of p variable).
 - Concept: $(p/\mu_g z)$ = constant (*never valid*).
Gas Diffusivity Equation (General Formulation)

"Dry Gas" — $\mu_g c_g$ vs. p

- "Dry Gas" PVT Properties: ($\mu_g c_g$ vs. p)
 - Concept: If $\mu_g c_g \approx$ constant, pseudotime NOT required.
 - Readily observe that $\mu_g c_g$ is NEVER constant, pseudotime required.
Gas Diffusivity Equation (\(p^2\) Formulation)

- Diffusivity Equations for a "Dry Gas": \(p^2\) Relations
 - \(p^2\) Form — Full Formulation:
 \[
 \nabla^2 (p^2) - \frac{\partial}{\partial p^2} \left[\ln(\mu g z) \right] \nabla (p^2)^2 = \frac{\phi \mu_g c_t}{k} \frac{\partial}{\partial t} (p^2)
 \]
 - \(p^2\) Form — Approximation:
 \[
 \nabla^2 (p^2) = \frac{\phi \mu_g c_t}{k} \frac{\partial}{\partial t} (p^2)
 \]
Gas Diffusivity Equation (\(p^2\) Formulation)

"Dry Gas" — \(\mu_g z\) vs. \(p\)

- "Dry Gas" PVT Properties: \((\mu_g z\) vs. \(p\))
 - Basis for the "pressure-squared" approximation (i.e., use of \(p^2\) variable).
 - Concept: \((\mu_g z)\) = constant, valid only for \(p<2000\) psia.
Gas Diffusivity Equation (p^2 Formulation)

$$p_{pg} = \left[\frac{\mu_g z}{p} \right]_{p_n} \int_{p_{base}}^{p} \frac{p}{\mu_g z} dp$$

$\mu_g z$ versus p (Cartesian Format) for 200 °F
(From Dranchuck EOS (z) and Lee, et al. (μ_g) Correlations)

$\mu_g z$ versus p (Log-Log Format) for 200 °F
(From Dranchuck EOS (z) and Lee, et al. (μ_g) Correlations)

- "Dry Gas" PVT Properties: ($\mu_g z$ vs. p)
 - Concept: IF ($\mu_g z$) = constant, THEN p^2-variable valid.
 - ($\mu_g z$) ≈ constant for $p < 2000$ psia.
 - Even with numerical solutions, p^2 formulation would not be appropriate.
Gas Diffusivity Equation (p Formulation)

Diffusivity Equations for a "Dry Gas": p Relations

- **p Form — Full Formulation:**

\[
\nabla^2 p - \frac{\partial}{\partial p} \ln \left(\frac{\mu_g z}{p} \right) (\nabla p)^2 = \frac{\phi \mu_g c_t}{k} \frac{\partial p}{\partial t}
\]

- **p Form — Approximation:**

\[
\nabla^2 p = \frac{\phi \mu_g c_t}{k} \frac{\partial p}{\partial t}
\]
Gas Diffusivity Equation (p Formulation)

\[
ppg = \left[\frac{\mu g z}{p} \right]_{p_n}^{p_{base}} \frac{p}{\mu g z} dp
\]

- "Dry Gas" PVT Properties: \((p/(\mu g z) vs. p)\)
 - Concept: IF \(p/(\mu g z) = \) constant, THEN \(p\)-variable is valid.
 - \(p/(\mu g z)\) is NEVER constant — pseudopressure required (for liquid eq.).
 - \(p\) formulation is never appropriate (even if generated numerically).
Gas Diffusivity Equation (Multiphase Formulation)

Multiphase Case — p-Form Relations (Perrine-Martin)

Gas Equation:

\[
\nabla \cdot \left[\left[\frac{k_g}{\mu_g B_g} + R_{so} \frac{k_o}{\mu_o B_o} + R_{sw} \frac{k_w}{\mu_w B_w} \right] \nabla p \right] = \frac{\partial}{\partial t} \left[\phi \left[\frac{S_g}{B_g} + R_{so} \frac{S_o}{B_o} + R_{sw} \frac{S_w}{B_w} \right] \right]
\]

Oil Equation:

\[
\nabla \cdot \left[\frac{k_o}{\mu_o B_o} \nabla p \right] = \frac{\partial}{\partial t} \left[\phi \frac{S_o}{B_o} \right]
\]

Water Equation:

\[
\nabla \cdot \left[\frac{k_w}{\mu_w B_w} \nabla p \right] = \frac{\partial}{\partial t} \left[\phi \frac{S_w}{B_w} \right]
\]

Multiphase Equation:

\[
\nabla^2 p = \phi \frac{c_t}{\lambda_t} \frac{\partial p}{\partial t} \quad \lambda_t = \frac{k_o}{\mu_o} + \frac{k_g}{\mu_g} + \frac{k_w}{\mu_w}
\]

Compressibility Terms:

\[
c_o = -\frac{1}{B_o} \frac{dB_o}{dp} + \frac{B_g}{B_o} \frac{dR_{so}}{dp}
\]

\[
c_w = -\frac{1}{B_w} \frac{dB_w}{dp} + \frac{B_g}{B_w} \frac{dR_{sw}}{dp}
\]

\[
c_g = -\frac{1}{B_g} \frac{dB_g}{dp}
\]

\[
c_t = c_o S_o + c_w S_w + c_g S_g + c_f
\]
Time-Pressure Schematic Plots

Semilog Plot

\[p_{wf} \]

\[\log t \]

Cartesian Plot

\[p_{wf} \]

\[t \]
Pressure Distributions — Solutions

All relations given in FIELD units.

Steady-State Solution:

\[p_r = p_w + 141.2 \frac{qB\mu}{kh} \ln(r/r_w) \quad [p_r - p_{wf} \text{ form}] \]

Full Solution: \((q = \text{constant})\)

\[p_D = \frac{1}{141.2} \frac{kh}{qB\mu} (p_i - p_r) \approx \frac{1}{2} E_1 \left[\frac{r_D^2}{4t_D} \right] - \frac{1}{2} E_1 \left[\frac{r_{eD}^2}{4t_D} \right] + 2 \frac{t_D}{r_{eD}^2} \exp \left[\frac{-r_{eD}^2}{4t_D} \right] + \left[\frac{r_D^2}{2r_{eD}^2} - \frac{1}{4} \right] \exp \left[\frac{-r_{eD}^2}{4t_D} \right] \]

Transient Solution: \((q = \text{constant})\)

\[p_D (r_D, t_D) = \frac{1}{2} E_1 \left[\frac{r_D^2}{4t_D} \right] \]

Radius of Investigation:

\[r_{inv} = 2.434 \times 10^{-2} \sqrt{\frac{k}{\phi \mu \nu t}} \]
Pressure Distributions — Transient Flow

Radial Pressure Distribution (Lee text Fig. 1.7)
Pressure Drawdown and Buildup Cases — E1(x) Solution

Pressure Distributions for Transient Radial Flow

- Note the effect of the drawdown.
- Note that the buildup pressure trends retrace last drawdown trend.
- Recall that all measurements are at the wellbore, we cannot "see" in the reservoir — our analyses are inferred from wellbore measurements.
Pressure Distributions — Pseudosteady-State

The physical concept of the PSEUDOSTEADY-STATE FLOW condition is defined as the condition where the pressure at all points in the reservoir changes at the same rate. Mathematically, this condition is given by:

\[
\frac{d}{dt} [p(r,t)]_r = \text{constant}
\]

Pseudosteady-State Flow — Summary of Relations

\((p_r - p_{wf})\) Flow Relations: (Circular Reservoir)

\[
p_r - p_{wf} = 141.2 \frac{qB \mu}{kh} \left[\frac{r_e^2}{(r_e^2 - r_w^2)} \ln \left(\frac{r}{r_w} \right) - \frac{1}{2} \left(\frac{r_e^2 - r_w^2}{r_e^2 - r_w^2} \right) + s \right]
\]

\((\bar{p} - p_{wf})\) Flow Relations: (\(\gamma = 0.577216\) Euler's constant)

\[
\bar{p} = p_{wf} + 141.2 \frac{qB \mu}{kh} \left[\ln \left(\frac{r_e}{r_w} \right) - \frac{3}{4} + s \right]
\]

(Circular Reservoir)

\[
\bar{p} = p_{wf} + 141.2 \frac{qB \mu}{kh} \left[\frac{1}{2} \ln \left(\frac{4A}{e^\gamma r_w^2 C_A} \right) + s \right]
\]

(General Formulation)

Time-Dependent Pseudosteady-State Flow Relations:

\[
p_r = p_i - 141.2 \frac{qB \mu}{kh} \left[\ln \left(\frac{r_e}{r} \right) + \frac{1}{2} \left(\frac{r_e^2 - r_w^2}{r_e^2 - r_w^2} - \frac{3}{4} \right) \right] - 5.615 \frac{qB}{V_p C_t} t
\]

\[
p_{wf} = p_i - 141.2 \frac{qB \mu}{kh} \left[\ln \left(\frac{r_e}{r_w} \right) - \frac{3}{4} + s \right] - 5.615 \frac{qB}{V_p C_t} t
\]

Pseudosteady-State Flow — Illustrative Behavior

\[r_{inv} = 2.434 \times 10^2 \sqrt[4]{\frac{k}{\phi \mu c}} t \]

- \(r_1 = 32.2 \text{ ft} \)
- \(r_2 = 88.4 \text{ ft} \)
- \(r_3 = 195 \text{ ft} \)
- \(r_4 = 413 \text{ ft} \)

(1) \(t_1 = 1.77 \text{ hr} \)
(2) \(t_2 = 13.3 \text{ hr} \)
(3) \(t_3 = 64.6 \text{ hr} \)
(4) \(t_4 = 291.7 \text{ hr} \)

Pressure Distribution during Constant Rate Transient Flow Drawdown

Reservoir Pressure Distribution — Constant Rate Transient Flow Drawdown.

Pseudosteady-State Flow — Illustrative Behavior

Reservoir Pressure Distribution during Constant Wellbore Pressure Transient Flow Drawdown.

![Graph showing reservoir pressure distribution with various time intervals and corresponding radii](image)

- \(r_1 = 32.2 \text{ ft} \)
- \(r_2 = 88.4 \text{ ft} \)
- \(r_3 = 195 \text{ ft} \)
- \(r_4 = 413 \text{ ft} \)

(1) \(t_1 = 1.77 \text{ hr} \)
(2) \(t_2 = 13.3 \text{ hr} \)
(3) \(t_3 = 64.6 \text{ hr} \)
(4) \(t_4 = 291.7 \text{ hr} \)

\[
\frac{k}{\mu \phi c_i} = 2.434 \times 10^{-2} \sqrt{\frac{1}{t}}
\]

Reservoir Pressure Distribution — Constant Wellbore Pressure Transient Flow Drawdown.

Pseudosteady-State Flow — Illustrative Behavior

Reservoir Pressure Distribution During Constant Rate Post-Transient Flow Drawdown, Homogeneous Reservoirs.

Pseudosteady-State Flow — Illustrative Behavior

Reservoir Pressure Distribution During Constant Rate Post-Transient Flow Drawdown, Homogeneous Reservoirs

Reservoir Pressure Distribution — Constant Wellbore Pressure Post-Transient Flow Drawdown, Homogeneous Reservoirs.

Reservoir and Well Solutions

- **Reservoir Models:**
 - Unfractured Well
 - Fractured Well
 - Naturally Fractured Reservoir

- **Reservoir + Well Models:**
 - Unfractured Well: \(WBS + IARF \)
 - Pressure Buildup in a Rectangle
 - Linear (Sealing) Reservoir Boundaries
 - Fractured Well: no \(WBS \)
 - Fractured Well: \(WBS \)
 - Naturally Fractured Reservoir: Unfractured well
Unfractured Well — Orientation and Solutions

Discussion: Orientation and Solutions (Unfractured Wells)

- Pressure profile propagates radially away from well (homogeneous).
- Cylindrical source solution \rightarrow finite wellbore.
- Line source solution \rightarrow infinitesimal wellbore (i.e., a line).
Discussion: Flow Regimes (Unfractured Wells)

- **INFINITE-ACTING RADIAL FLOW (IARF)** is the most "popular" regime.
- **PSEUDOSTEADY-STATE (PSS) flow** → CLOSED BOUNDARIES.
- **STEADY-STATE (SS) flow** → CONSTANT PRESSURE (not realistic).

Schematic drawing of geometry and boundary conditions for radial flow, constant-rate cases.
Discussion: Skin Factor Concept (Unfractured Wells)

- Finite skin concept → zone of "altered" permeability near the well.
- Infinitesimal skin concept → mathematical convenience.
- Negative skin has mathematical (and physical) limitations.
Unfractured Well — Complete Flow Solution

Solution for all points in the reservoir:

\[p_D(r_D, r_e D, t_D) \approx \frac{1}{2} E_1 \left[\frac{r_D^2}{4 t_D} \right] - \frac{1}{2} E_1 \left[\frac{r_e D^2}{4 t_D} \right] + 2 \frac{r_D^2}{r_e D^2} \exp \left[\frac{-r_e D^2}{4 t_D} \right] + \left[\frac{r_D^2}{2r_e D^2} - \frac{1}{4} \right] \exp \left[\frac{-r_e D^2}{4 t_D} \right] \]
Unfractured Well — Transient Flow Solution

Solution at the Well (only):

\[p_D(r_D = 1, s, t_D) = \frac{1}{2} E_1 \left(\frac{1}{4t_D} \right) + s \]

\[\approx \frac{1}{2} \ln \left(\frac{4}{e^\gamma} t_D \right) + s \quad (\gamma = 0.577216 \ldots \text{Euler's Constant}) \]
Discussion: Flow Regimes

- **FORMATION LINEAR** flow **DOES NOT EXIST** (a few seconds at most).
- **FORMATION** linear flow \rightarrow **High** fracture conductivity.
- **BILINEAR** flow \rightarrow **Low** fracture conductivity.
Fractured Well — Fracture Damage Comparison

Discussion: Fracture Damage Comparison

- **Argument:** Finite conductivity can be modeled as damage...
 (false!)
- "Fluid loss" damage is no referred to as "fracture face" skin.
- "Choked fracture" damage is just a constant skin factor.
 (not correct)
Fractured Well — Analytical Solution (Uniform Flux)

General (Uniform Flux) Solution: (Infinite Conductivity Solution; \(x_D \approx 0.732 \))

\[
p_D(t_{Dxf},|x_D|<1) = \frac{\sqrt{\pi} t_{Dxf}}{2} \left[\text{erf}\left(\frac{1-x_D}{2 \sqrt{t_{Dxf}}} \right) + \text{erf}\left(\frac{1+x_D}{2 \sqrt{t_{Dxf}}} \right) \right] + \frac{1-x_D}{4} E_1 \left(\frac{(1-x_D)^2}{4t_{Dxf}}\right) + \frac{1+x_D}{4} E_1 \left(\frac{(1+x_D)^2}{4t_{Dxf}}\right)
\]

Short-Time Solution: Linear Flow

\[
p_{wD}(t_{Dxf}) = \sqrt{\pi} t_{Dxf}
\]

Long-Time Solution: Pseudoradial Flow (Infinite Conductivity Fracture)

\[
p_{wD}(t_{Dxf}) = \frac{1}{2} \left[\ln(t_{Dxf}) + 2.20000 \right]
\]

(pseudoradial flow: <1% error, \(t_{Dxf} > 10 \))

Identities:

\[
\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) \, dt
\]

[\text{erf}(0) = 0; \text{erf}(\infty) = 1; \text{erf}(-\infty) = -1]

\[
E_1(z) = \int_z^\infty \frac{e^{-t}}{t} \, dt
\]

\[
[E_1(z < 0.01) \approx \ln\left(\frac{1}{ze^\gamma}\right); E_1(\infty) = 0]
\]

\[(\gamma = 0.577216... \text{ Euler's constant})\]
Fractured Well — Transient Flow Solution

Real Domain: (uniform flux)

\[P_D \left[|x_D| \leq 1, y_D = 0, t_{Dx_f} \right] = \frac{1}{4} \int_{-1}^{+1} E_1 \left[\frac{(x_D - x_{wD})^2}{4t_{Dx_f}} \right] dx_{wD} \]

\[= \frac{\sqrt{\pi t_{Dx_f}}}{2} \left[\text{erf} \left(\frac{(1-x_D)}{2\sqrt{t_{Dx_f}}} \right) + \text{erf} \left(\frac{(1+x_D)}{2\sqrt{t_{Dx_f}}} \right) \right] \]

\[+ \frac{(1-x_D)}{4} E_1 \left[\frac{(1-x_D)^2}{4t_{Dx_f}} \right] + \frac{(1+x_D)}{4} E_1 \left[\frac{(1+x_D)^2}{4t_{Dx_f}} \right] \]
Naturally Fractured Reservoirs — Fracture Patterns

Discussion: Fracture Patterns

- Fracture patterns are due to stress orientation.
- Large-scale fractures can yield tremendous productivity.
- Stress state changes during production (depletion) — re-fracture?

Fracture Pattern 1: \(\sigma_1, \sigma_3 \) acting in the bedding plane and \(\sigma_2 \) acting normal to the bedding plane (\(\sigma_1 \) — dip direction; \(\sigma_2 \) — strike direction). (Stearns, Courtesy AAPG.)

Fracture Pattern 2: \(\sigma_1, \sigma_3 \) acting in the bedding plane and \(\sigma_2 \) acting normal to the bedding plane (\(\sigma_1 \) — dip direction; \(\sigma_2 \) — strike direction). (Stearns, Courtesy AAPG.)

Various types of fractures generated by folding (courtesy of Leroy").

Discussion: Fracture Models

- Kazemi initially produced "slab" model using numerical simulator.
- De Swaan developed the solution for transient interporosity flow.
- Najurieta developed Laplace domain form of De Swaan result.

Discussion: Warren and Root Model

- "Borrowed" (i.e., stolen) from Barenblatt and Zheltov.
- By far the most popular "heterogeneous" reservoir model.
- Some physical limitations, but its simplicity provides unique flexibility.
Naturally Fractured Reservoirs — W&R Model

Laplace Domain Solution:

\[\bar{p}_D(u, r_D, \omega, \lambda, s) = \frac{1}{u} K_0(\sqrt{u f(u)} r_D) + \frac{s}{u} \quad \text{(Line Source Solution)} \]

\[\approx \frac{1}{2u} \ln \left[\frac{4}{e^r} \frac{1}{r_D^2} \frac{1}{u f(u)} \right] + \frac{s}{u} \quad \text{("Log" Approximation)} \]

\[f(u) = \frac{\lambda + \omega(1 - \omega)u}{\lambda + (1 - \omega)u} \]

Real Domain Solution: (Derived from the Log Approximation Solution)

\[p_D(t_D, r_D = 1, \omega, \lambda, s) \approx \frac{1}{2} \ln \left[\frac{4}{e^r} t_D \right] - \frac{1}{2} E_1 \left[\frac{\lambda}{\omega(1 - \omega)} t_D \right] + \frac{1}{2} E_1 \left[\frac{\lambda}{(1 - \omega)} t_D \right] + s \]

\[p_D'(t_D, r_D = 1, \omega, \lambda, s) \approx \frac{1}{2} + \frac{1}{2} \exp \left[-\frac{\lambda}{\omega(1 - \omega)} t_D \right] - \frac{1}{2} \exp \left[-\frac{\lambda}{(1 - \omega)} t_D \right] \]

(No Wellbore Storage)

Radius of Investigation (Transient Radial Flow)

\[
p_D(r_D, t_D) = \frac{1}{2} E_1 \left[\frac{r_D^2}{4 t_D} \right]
\]

\[
\approx \frac{1}{2} \ln \left[\frac{4}{e^\gamma} \frac{t_D}{r_D^2} \right] \quad (\gamma = 0.577216...\text{Euler's Constant})
\]

Solve for \(p_D(r_D, t_D) = 0 \), implies that \(p(r_{inv}, t) = p_i \)

\[
\frac{1}{2} \ln \left[\frac{4}{e^\gamma} \frac{t_D}{r_{D,inv}^2} \right] = 0
\]

\[
\frac{4}{e^\gamma} \frac{t_D}{r_{D,inv}^2} = 1
\]

\[
r_{D,inv}^2 = \frac{4}{e^\gamma} t_D \text{ or } r_{D,inv} = \sqrt{\frac{4}{e^\gamma} t_D}
\]
Radius of Investigation (Transient Radial Flow)

\[
r_{D, inv} = \sqrt{\frac{4}{e^\gamma}} t_D
\]

where

\[
p_D = \frac{1}{141.2} \frac{kh}{qB\mu} (p_i - p_{wf})
\]

\[
t_D = 2.637 \times 10^{-3} \frac{k}{\phi \mu c_t r_w^2} t
\]

\[
r_D = \frac{r}{r_w}
\]

Solving using the dimensionless variables yields

\[
r_{inv} = \sqrt{\frac{4}{e^\gamma}} 2.637 \times 10^{-3} \sqrt{\frac{kt}{\phi \mu c_t}}
\]

\[
= 2.434 \times 10^{-2} \sqrt{\frac{kt}{\phi \mu c_t}}
\]
Radial Flow "Skin Factor"
(used to represent non-ideal behavior)
"Wellbore Storage" Effects

Under Construction
Rate Effects
(Horner Approximation and Recommendations for Well Rates)
van Everdingen-Hurst Solutions