Production Analysis

A Complete Example Analysis —
East Texas Gas Well

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
+1.979.845.2292 — t-blasingame@tamu.edu
PA Example: $\log(q_g)$ and p_{wf} vs. Time

Production Data Analysis Plot for East Texas Gas Well
"Summary" History Plot — Rate and Pressure Functions

Legend: East Texas Gas Well
- q_g Production Data
- p_w Production Data (measured surface/converted bottomhole)
- p_{ws} Well Test Data (measured bottomhole)
PA Example: \(\log(q_g) \) vs. Time (with rate extrapolations)

Production Data Analysis Plot for East Texas Gas Well
"Summary" History Plot — Rate and Pressure Functions

Legend: East Texas Gas Well
- \(q_g \) Production Data
- \(q_g \) Exponential Model
- \(q_g \) Hyperbolic Model
- \(q_g \) Reservoir Model

\textbf{EUR Analysis Results:} East Tx Gas Well
- \(q_i = 4000 \text{ MSCF/D} \)
- \(D_i = 0.00471 \text{ 1/D} \)
- \(b = 0.3 \) (dimensionless)
- \(G = 1.586 \text{ BSCF} \) (reservoir model)

\(q_g \) Reservoir model extrapolation made from last \(p_{wf} \)
PA Example: q_g vs. G_p (with rate extrapolations)

Production Data Analysis Plot for East Texas Gas Well
Rate Versus Cumulative Gas Production Plot (EUR)

Legend: East Texas Gas Well
- q_g Data Function
- q_g Exponential Model
- q_g Hyperbolic Model
- q_g "Quadratic" Model
- q_g Reservoir Model (last p_{wf})

EUR Analysis Results: East Tx Gas Well
- $q_i = 4000$ MSCF/D
- $D_i = 0.00471$ 1/D
- $b = 0.3$ (dimensionless)
- $G = 1.586$ BSCF (reservoir model)

Exponential Extrapolation:
\[
(EUR)^{\text{min}} = 0.85 \text{ BSCF} \\
(q_g = q_{gi} - D_i G_p)
\]

Hyperbolic Extrapolation:
\[
(EUR)^{\text{hyp}} = 1.21 \text{ BSCF} \\
q_g = q_{gi} \left[1 - (G_p (1-b) (D_i/q_{gi}))^{1/(1-b)}\right]
\]

Quadratic Extrapolation:
\[
(EUR)^{\text{max}} = 1.7 \text{ BSCF} \\
q_g = q_{gi} - D_i G_p + [D_i(2G)] G_p^2
\]

Reservoir Model Extrapolation:
\[
(EUR)^{\text{res}} = 1.45 \text{ BSCF} \\
p_{wf} = 785 \text{ psia (last pressure)}
\]
PA Example: Arps Hyperbolic Type Curves

Specialized Hyperbolic "Rate-Cumulative" Type Curve (Arps' Relations)

Normalized Gas Flowrate \(\frac{q_g}{q_{gi}} \) Versus
1 - Normalized Cumulative Gas Production \[1 - \left(\frac{G_p}{G} \right) \]

East Texas Gas Well

\[
q_g = q_{gi}\left[1 - \left(\frac{G_p}{G}\right)\right]^{1/(1-b)} \quad \text{(where: } G = q_{gi}/[(1-b)D_1])
\]

Hyperbolic Trend: \(q_g = q_{gi}\left[1 - \left(\frac{G_p}{G}\right)\right]^{1/(1-b)} \)
PA Example: p_{wf} vs. q_g Crossplot (quality check)

Calculated Bottomhole Pressure Versus Gas Flowrate
East Texas Gas Well (Tight Gas Reservoir Case)

Boundary-Dominated Flow Behavior (late time)

Transient "Spikes" Caused Periodic by Shut-Ins

Transient Flow Behavior (early time)
PA Example: Normalized Log-Log Plot (model match)

Production Data Analysis Plot for East Texas Gas Well
"Log-Log" Plot (Normalized Productivity Index)

Data for East Tx Gas Well:
Fluid Properties:
- $\gamma_g = 0.7$ (air=1)
- $T=300$ Deg. F
Formation Properties:
- $r_w=0.333$ ft
- $h=177$ ft
- $\phi=0.088$ (fraction)
- $S_w=0.131$ fraction
- $p_i = 9330$ psia

Analysis Results: East Tx Gas Well
(Bounded Circular Reservoir Case)
- $k = 0.0554$ md
- $x_f = 290$ ft
- $F_{CD} = 9.52$ (dimensionless)
- $G = 1.586$ BSCF
- $r_e = 339$ ft

Legend: Model Responses
- p_{Dd_i} Model Function
- p_{Dd_id} Model Function

Legend: Data Functions
- p_{Dd_i} Data Function
- p_{Dd_id} Data Function

Dimensionless Pressure Functions

Dimensionless Decline Material Balance Time Function, t_{Dd}
PA Example: "Blasingame" Log-Log Plot (model match)

Production Data Analysis Plot for East Texas Gas Well
"Blasingame" Plot

Legend: Model Responses
- q_{DDd} Model Function
- q_{DDi} Model Function
- q_{DDid} Model Function

Analysis Results: East Tx Gas Well
(Bounded Circular Reservoir Case)
- $k = 0.0554$ md
- $x_f = 290$ ft
- $F_{CD} = 9.52$ (dimensionless)
- $G = 1.586$ BSCF
- $r_e = 339$ ft

Data for East Tx Gas Well:
Fluid Properties:
- $\gamma_g = 0.7$ (air=1)
- $T = 300$ Deg. F
Formation Properties:
- $r_w = 0.333$ ft
- $h = 177$ ft
- $\phi = 0.088$ (fraction)
- $S_w = 0.131$ fraction
- $p_i = 9330$ psia

Legend: Data Functions
- q_{DD} Data Function
- q_{DDi} Data Function
- q_{DDid} Data Function

Dimensionless Rate Functions
$q_{DD}, q_{DDi}, q_{DDid}$

Dimensionless Decline Material Balance Time Function, t_{DD}
PA Example: PTA (match/comparison)

Pressure Buildup Test Analysis Plot for East Texas Gas Well
"Log-Log" Summary Analysis Plot

Data for East Tx Gas Well:
- Fluid Properties:
 - \(\gamma_g = 0.7 \) (air=1)
 - \(T = 300 \) Deg. F
- Formation Properties:
 - \(r_w = 0.333 \) ft
 - \(h = 177 \) ft
 - \(\phi = 0.088 \) (fraction)
 - \(S_w = 0.131 \) fraction
 - \(p_i = 9330 \) psia

Analysis Results: East Tx Gas Well
- \(k = 0.0545 \) md
- \(x_f = 260 \) ft
- \(F_cD = 26.1 \) (dimensionless)
- \(C_s = 0.012 \) RB/psi
- \(r_e = 340 \) ft
- \(p_i = 9330 \) psia ("imposed")

Legend: Model Responses
- \(p_{Dd} \) Model Function
- \(p_{Dd} \) Model Function (Bounded Circular Reservoir Case)

Legend: Data Functions
- \(p_{Dd} \) Production Data Function
- \(p_{Dd} \) Production Data Function
- \(p_{Dd} \) Well Test Data Function
- \(p_{Dd} \) Well Test Data Function

Dimensionless Time Function (in terms of \(x_f \), \(t_{Dxf} \))

Tom BLASINGAME | t-blasingame@tamu.edu | Texas A&M U.
PA Example: Summary Plot

Production Data Analysis Plot for East Texas Gas Well
"Summary" History Plot — Rate and Pressure Functions

Legend:
- East Texas Gas Well
- q_g Data Function
- p_{wf} Data Function
- q_g Model Response
- p_{wf} Model Response

Analysis Results:
East Tx Gas Well
(Bounded Circular Reservoir Case)
- $k = 0.0554$ md
- $x_f = 290$ ft
- $F_{CD} = 9.52$ (dimensionless)
- $G = 1.586$ BSCF
- $r_e = 339$ ft

Graph Details:
- q_g, MCFG/Day
- p_{wf}, psia
- Production Time, hr
- Flowing Bottomhole Pressure, p_{wf}, psia
Production Analysis
A Complete Example Analysis — East Texas Gas Well
(End of Lecture)

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
+1.979.845.2292 — t-blasingame@tamu.edu