Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Introduction to Reservoir Engineering:
- Be familiar with the World Oil Resources ... Slides — 3-4
- Be familiar with the Reservoir Structure/Depositional Environments ... Slide — 5
- Be familiar with Common Depositional Structures .. Slide — 6
- Be familiar with the Concept of Porosity (packings of spheres) ... Slide — 7
- Be familiar with the Concept of Porosity (unconsolidated sands) .. Slide — 8
- Be familiar with the Concept of Permeability (Darcy's Experiment) Slide — 9
- Be familiar with the Concept of Permeability — Definition of a "Darcy" Slide — 10
- Be familiar with Petrophysics Map — Archie (1950) ... Slide — 11
- Be familiar with Petrophysics — Early Correlation Concepts ... Slide — 12
- Be familiar with Phase Behavior .. Slide — 13-14
 - Phase Behavior (Example Gas Data/Correlations) ... Slide — 13
- Geology/Petrophysics — Questions to Consider ... Slide — 9
- Be familiar with Reservoir Modeling .. Slides — 20-27
 - Reservoir Modeling — Introduction .. Slide — 20
 - Reservoir Modeling — Preliminary Work .. Slide — 21
 - Reservoir Modeling — History Matching ... Slide — 22
 - Reservoir Modeling — Forecasting .. Slide — 23
 - Reservoir Modeling — Perspectives .. Slide — 24
 - Reservoir Modeling — General Concepts .. Slide — 25
 - Reservoir Modeling — Potential Areas of Conflict ... Slide — 26
- Reservoir Modeling — Resolution of Conflicts .. Slide — 27
- Be familiar with the History of Reservoir Engineering ... Slides — 28-34
 - History of Reservoir Engineering — Orientation ... Slide — 28
 - History of Reservoir Engineering — Timelines ... Slide — 29
 - History — Tasks of the Reservoir Engineer ... Slide — 30
 - History — Data Sources/Reservoir Engineering Workflows ... Slide — 31
 - History — Fundamental Drive Mechanisms ... Slide — 32
 - History — Trapping Mechanisms ... Slide — 33
 - History — Trapping Mechanisms (Comments from Muskat) ... Slide — 34

Reservoir Petrophysics: Introduction to Geology
- Be familiar with Geology ... Slides — 2-5
 - Geology — Reservoir Petrophysics — Introduction to Geology .. Slide — 2
 - Geology — Basic Porosity Types — Sandstones ... Slide — 3
 - Geology — Sandstone Depositional Systems ... Slide — 4
 - Geology — Carbonate Depositional Systems — ϕ and k ... Slide — 5
- Be familiar with Petrophysics .. Slides — 6-7
 - Petrophysics — Effect of Small-Scale Heterogeneities ... Slide — 6
 - Petrophysics — Example — k_{WTB}, k_{PTA} with k_{bulk} .. Slide — 7
- Reservoir Scale Issues — Halderson Schematics ... Slide — 8
- Geology/Petrophysics — Questions to Consider .. Slide — 9
- Be familiar with Flow Concepts .. Slide — 11-14
 - Flow Concepts — Klinkenberg Effect ... Slide — 12
 - Flow Concepts — High-Velocity Flow in Porous Media .. Slide — 13
 - Flow Concepts — Klinkenberg Effect — H_2, H_3, H_4, and CO_2 Slide — 14
- Be familiar with Reservoir Petrophysics .. Slides — 15-26
 - Reservoir Petrophysics — Low/Ultra-Low Permeability Issues (Nelson) Slide — 15
 - Reservoir Petrophysics — Permeability Characterizations/Correlations Slide — 16
 - Reservoir Petrophysics — $k = a \exp(b \phi)$ (Schematic Trends) Slide — 17
 - Reservoir Petrophysics — $k = a \exp(b \phi)$ (Archie Trends) ... Slide — 18
 - Reservoir Petrophysics — Archie $k-\phi-F$ Relations .. Slide — 19-20
 - Reservoir Petrophysics — Porosity-Permeability — Power Law Relation Slide — 21
 - Reservoir Petrophysics — Fractal Model for Permeability (Pape) Slide — 22
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Reservoir Petrophysics: Introduction to Geology (continued)

- Reservoir Petrophysics — Influence on Φ and k (Unconsolidated Sand) ... Slide — 23
- Reservoir Petrophysics — Φ and k (Power Law Relation) ... Slide — 24
- Reservoir Petrophysics — Cornell-Katz Relation for High-Velocity Flow .. Slide — 26

Phase Behavior: Introduction to Phase Behavior

- Phase Behavior — Learning Objectives ... Slide — 2
- Phase Behavior — Introduction to Reservoir Fluids (Classifications, Definitions, Examples) Slides — 3
- Phase Behavior — Classifications ... Slides — 4-6
 - Phase Behavior — Classification of Reservoir Fluids (McCain) ... Slide — 5
 - Phase Behavior — Fluid Types and Petroleum Products ... Slide — 6
- Phase Behavior — PT Diagrams ... Slides — 7-14
 - Phase Behavior — PT Diagram — Single Component System .. Slide — 7
 - Phase Behavior — PT Diagram — Multi-Component Systems .. Slide — 8
 - Phase Behavior — PT Diagram — Hydrocarbon Systems ... Slide — 9
 - Phase Behavior — PT Diagram — Black Oil Reservoir Fluid .. Slide — 10
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid .. Slide — 11
 - Phase Behavior — PT Diagram — Retrograde Gas (Condensate) Reservoir Fluid Slide — 12
 - Phase Behavior — PT Diagram — Wet Gas Reservoir Fluid ... Slide — 13
 - Phase Behavior — PT Diagram — Dry Gas Reservoir Fluid ... Slide — 14
- Phase Behavior — Classifications ... Slides — 15-18
 - Phase Behavior — Definition of Formation Volume Factor (B_g,w) .. Slide — 15
 - Phase Behavior — Fluid Viscosity (μ_g,w) .. Slide — 16
 - Phase Behavior — Rock and Fluid Compressibility ... Slide — 17
 - Phase Behavior — Various "Black Oil" Fluid Properties ... Slide — 18
- Phase Behavior — Gas z-Factor and Gas Viscosity .. Slides — 19-25
 - Phase Behavior — z vs. p (Various Hydrocarbons) ... Slide — 19
 - Phase Behavior — z vs. p (Law of Corresponding States) ... Slide — 20
 - Phase Behavior — μ_g vs. T (and p) (Dry Gas Case) .. Slide — 21
 - Phase Behavior — μ_g vs. T (and p) (Dry Gas Case) .. Slide — 22
 - Phase Behavior — μ_g vs. p (Dry Gas Case) ... Slide — 23
 - Phase Behavior — μ_g vs. p (Dry Gas Case) ... Slide — 24
- Phase Behavior — Questions to Consider (Reservoir Fluids) ... Slides — 25
- PVT Applications .. Slides — 26-33
 - PVT Applications — Orientation .. Slide — 27
 - PVT Applications — Starter Discussion — Phase Diagrams ... Slide — 28
 - PVT Applications — Reservoir Fluids — Phase Diagrams ... Slide — 29
 - PVT Applications — Reservoir Fluids .. Slide — 30
 - PVT Applications — Typical Compositions of Reservoir Fluids... Slide — 31
 - PVT Applications — PT Diagram (Black Oil) .. Slide — 32
 - PVT Applications — PT Diagram (VO/GC) .. Slide — 33
- PVT Properties (Reservoir Fluids) ... Slides — 34-58
 - PVT Properties — Orientation .. Slide — 35
 - PVT Properties — Dry Gases .. Slide — 37
 - Physical Properties of Gases ... Slide — 38
 - z vs. p_g/T_g and p_g (Dry Gas Case) .. Slide — 39
 - Gas Compressibility (Dry Gas Case) [Mattiart] .. Slide — 40
 - Gas Compressibility (gas case) [DAK-EOS] ... Slide — 41
 - Gas Formation Volume Factor (B_g) .. Slide — 42
 - Gas Viscosity (dry gases) [older methods] .. Slide — 43-46
 - PVT Properties — Black Oils ... Slides — 47-58
 - Oil Formation Volume Factor [Standing Correlation] .. Slide — 47-49
 - Solution GOR/Bubblepoint [Standing Correlation] ... Slide — 50-52
 - Oil Compressibility [Definition and Correlations] ... Slide — 53-55
 - Oil Viscosity [Correlations] ... Slide — 56-57
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Gas Material Balance:
- Material Balance — Orientation/Historical Perspectives ... Slides — 2-5
 - Material Balance — Orientation .. Slide — 2
 - Material Balance — Historical Perspectives ... Slide — 6
 - Material Balance — Petroleum Reservoirs ... Slide — 4
 - Material Balance — Average Reservoir Pressure ... Slide — 5
- Material Balance Relations .. Slides — 6-8
 - Material Balance — General Gas Material Balance ... Slide — 6
 - Material Balance — ”Dry Gas” Material Balance .. Slide — 6
 - Material Balance — ”Abnormal Pressure” Material Balance .. Slide — 7
 - Material Balance — ”Water Influx” Material Balance .. Slide — 6
- Material Balance Examples .. Slides — 9-12
 - Material Balance — Volumetric Gas Reservoir Case .. Slide — 9
 - Material Balance — Abnormally-Pressured Gas Reservoir Case .. Slide — 10
 - Material Balance — Water Influx Gas Reservoir Case ... Slide — 11

Pressure Transient Analysis:

Orientation — Pressure Transient Analysis:
- Be familiar with the objectives of Pressure Transient Analysis ... Slide — 2
- Be familiar with the input data required for Pressure Transient Analysis ... Slide — 2
- Be familiar with the results of Pressure Transient Analysis (PTA) interpretation Slide — 2
- Be familiar with PTA diagnostic examples ... Slide — 3
- Be familiar with static data required for PTA (PVT, Reservoir Properties, Well Completion) Slide — 4
- Be familiar with the issues related to production histories used for the analysis of pressure and rate data ... Slide — 5
- Be familiar with a tight gas example for PTA and Production Analysis .. Slide — 6-7
 - Be familiar with the production pressures and rates for a tight gas reservoir case............................... Slide — 6
 - Be familiar with an example of PTA for a tight gas reservoir case ... Slide — 7
- Be familiar with concepts/relations for early well deliverability (circa 1935) .. Slide — 8
- Be familiar with the concept of the "4-point" well deliverability test... Slide — 9
- Be familiar with the layout of a typical reservoir/well/facilities system (after Fonseca) Slide — 10
- Be familiar with "next advances" expected in PTA and Production Analysis .. Slide — 11
- Be familiar with the "Questions to Consider" for Pressure Transient Analysis (Orientation for PTA) Slide — 12

Basic Concepts/Processes — Pressure Transient Analysis:
- Basic Concepts/Processes — Pressure Transient Analysis ... Slides — 14-24
- Be familiar with tubular system schematics .. Slide — 15
- Be familiar with an example “drill-stem test” ... Slide — 16
- Be familiar with an example of a "semilog" drawdown test plot ... Slide — 17
- Be familiar with an example of a "log-log" drawdown test plot ... Slide — 18
- Be familiar with an example of a "semilog" buildup test plot ... Slide — 19
- Be familiar with the flow regimes encountered in pressure transient analysis (WBS, IARF, fractured wells)... Slide — 20
- Be familiar with the properties that can be obtained from a pressure transient test Slide — 21
- Be familiar with the common plots/flow regimes typical for a pressure transient test Slide — 22
- Be familiar with the "Questions to Consider" for Pressure Transient Analysis (Challenges for PTA) Slide — 23

Pressure-Distance Plots — Pressure Transient Analysis:
- Pressure-Distance Plots — Pressure Transient Analysis .. Slides — 25-36
- Be familiar with and be able to apply the "radius of investigation" relation for transient radial flow Slide — 26
- Be familiar with and be able to apply the "pressure distribution" solutions for radial flow Slides — 27-28
- Be familiar with and be able to apply use the "pseudosteady-state flow" concept Slides — 28-30
- Be familiar with the schematic of reservoir pressure for various flow conditions (radial flow) Slides — 31-35
 - Constant rate, transient radial flow behavior [log(r) format] ... Slide — 31
 - Log-linear rate decline, transient radial flow behavior [log(r) format] .. Slide — 32
 - Constant wellbore pressure, transient radial flow behavior [log(r) format] .. Slide — 33
 - Constant rate, transient radial flow behavior [Cartesian r format] ... Slide — 34
 - Constant wellbore pressure, transient radial flow behavior [Cartesian r format] Slide — 35
- Be familiar with the "Questions to Consider" for Reservoir Pressure Trends .. Slide — 36
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Pressure Transient Analysis: (Continued)

Basic Analysis Plots — Pressure Transient Analysis:
- Be familiar with and be able to identify and use the appropriate relations for "wellbore storage". Slides — 38-43
 - Be familiar with the base relations for wellbore storage. Slide — 38
 - Be familiar with the schematic Cartesian plots for wellbore storage distorted PTA data. Slide — 39
 - Be familiar with the "exponential approximation" solution for wellbore storage. Slide — 40
 - Be familiar with and be able to apply the "Bourdet-Gringarten" wellbore storage "type curve". Slide — 41
 - Be familiar with and be able to apply the Cartesian plot for wellbore storage distorted PTA data. Slide — 42
 - Be familiar with and be able to apply the Log-log plot for wellbore storage distorted PTA data. Slide — 43
- Be familiar with the "Questions to Consider" for Conventional PTA Plots. Slides — 44-45
 - Be familiar with and be able to apply the Semilog plot for PTA data during the IARF regime. Slide — 44
 - Be familiar with and be able to apply the Log-log plot for PTA data during the IARF regime. Slide — 45
- Be familiar with and be able to identify and use the Muskat-Arps late-time Pressure Buildup (PBU) plot. Slide — 46
- Be familiar with the "Questions to Consider" for Conventional PTA Plots. Slide — 47

PTA Model-based Analysis — Pressure Transient Analysis:
- Be familiar with the Orientation Slide for PTA Model-Based Analysis. Slide — 49-62
 - Be familiar with and be able to apply models for "fractured wells". Slides — 50-52
 - Be familiar with and be able to apply models for "fractured wells". Slides — 53-58
- Be familiar with the "Questions to Consider" for Reservoir Models. Slide — 63

PTA Type Curves — Pressure Transient Analysis:
- Be familiar with the "Questions to Consider" for PTA Type Curves. Slide — 64-76
 - "Bourdet-Gringarten" Type Curve: WBS and IARF. Slide — 65
 - "Ansah" Type Curve: Late-Time Pressure Buildup. Slide — 66
 - "Stewart" Type Curves: Sealing Faults. Slide — 67
 - "Cinco" Type Curves: Vertically Fractured Well (No WBS). Slide — 68-69
 - "Economides" Type Curves: Vertically Fractured Well (with WBS). Slide — 70-72
 - "Onur" Type Curves: Naturally Fractured Reservoirs (No WBS). Slide — 73-74
 - "Angel" Type Curves: Naturally Fractured Reservoirs (with WBS). Slide — 75
- Be familiar with the "Questions to Consider" for PTA Type Curves. Slide — 76

PTA Field Examples — Pressure Transient Analysis:
- Unfractured oil well (SPE 11463) — Infinite-Acting Radial Flow (IARF). Slide — 78
 - Unfractured oil well (SPE 12777) — Infinite-Acting Radial Flow (IARF). Slide — 79
 - Unfractured oil well (SPE 13054) — Dual Porosity, Infinite-Acting Radial Flow (IARF). Slide — 80
 - Unfractured oil well (SPE 18160) — Dual Porosity, Infinite-Acting Radial Flow (IARF). Slide — 81
 - Fractured gas well (SPE 9975 — Well 5) — Hydraulically fractured gas well. Slide — 82
 - Fractured gas well (SPE 9975 — Well 10) — Hydraulically fractured gas well. Slide — 83
 - Fractured gas well (SPE 9975 — Well 12) — Hydraulically fractured gas well. Slide — 84
 - Fractured oil well (SPE 103204 — Well 207) — Pressure fall-off test. Slide — 85
 - Fractured oil well (SPE 103204 — Well 5408) — Pressure fall-off test. Slide — 86
 - Fractured oil well (SPE 103204 — Well 2403) — Pressure fall-off test. Slide — 87
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Production Analysis:

Orientation — Production Analysis:
- Orientation — Production Analysis ... Slides — 1-16
- Be familiar with Semilog, and Log-Log plotting coordinates Slides — 2-3
- Be familiar with the Objectives of Production Data Analysis Slide — 4
- Be familiar with the data requirements (and issues) for production data analysis .. Slide — 4
- Be familiar with the give production data example (SPE 15482) Slide — 5
- Be familiar with the required static data input for production analysis Slide — 6
- Be familiar with the common issues with production data Slide — 7
- Be familiar with the influence/impact of "allocated data" on production analysis Slides — 8-9
- Be familiar with the influence/impact of a completion on the analysis of production data Slides — 10-12
- Be familiar with the influence/impact of using surface rather than bottomhole pressure data Slides — 13-15

Integration of Results — Production Analysis:
- Integration of Results — Production Analysis .. Slides — 16-xx
- Be familiar with and be able to apply the "Integration of Results" methods Slide — 17
- Be familiar with and be able to apply the "Correlation of PA Results" methods Slides — 16-23
- Be familiar with the most fundamental concepts of "Well Deliverability" Slide — 24
- Be familiar with the well/facilities flow system and the critical points in the system Slide — 25
- Be familiar with the concept of reservoir heterogeneity and how this affects PA and PTA Slide — 26
- Be familiar with the "scales of results" issues that occur when trying to relate PA and PTA results Slide — 27
- Be familiar with and be able to apply the "Guidelines for Performance-Based Reservoir Characterizations" Slide — 28
- Be familiar with the use of reservoir simulation to "integrate" the well model(s) and performance data Slide — 29

Integration of Geology — Production Analysis:
- Integration of Geology and the Analysis of Reservoir Performance — Production Analysis Slides — 30-38
- Be familiar with sandstone depositional systems .. Slides — 31-32
- Be familiar with carbonate depositional systems .. Slide — 33
- Be familiar with the Weber Example core: Permeability Characterization/Correlation Slide — 34
- Be familiar with the Field Case: Womack Hill — Comparison of \(k_{WPA} \) and \(k_{SWPA} \) Slide — 35
- Be familiar with the Field Case: Tordillo Field — Comparison of \(h \) and \(OOIP_{WPA} \) Slide — 36
- Be familiar with the Field Case: Tordillo Field — Comparison of \(h \) and \(kWPA \) Slide — 37
- Be familiar with the Field Case: Santa Barbara — \(k_{WPA} \), \(k_{PTA} \) with \(k_{log\ mean} \) Slide — 38

Pressure Transient Analysis — Overlap with Production Analysis — Production Analysis:
- Pressure Transient Analysis — Overlap with Production Analysis — Production Analysis Slides — 39-50
- Be familiar with the PTA topics which are relevant to well performance analysis Slide — 40
- Be familiar with the current library of PTA models .. Slide — 41
- Be familiar with the philosophy and objectives of PTA Slides — 42-46
- Be familiar with the "Arun Field" example comparison of \((kh)_{PTA} \) versus \((kh)_{PTA} \) Slide — 47
- Be familiar with the topics/issues related to Reservoir Simulation which are relevant to PA and PTA Slide — 48
- Be familiar with the "Reservoir Integration" flowchart presented by Weber Slide — 49
- Be familiar with the schematics "Reservoir Scales" (by Weber) and "Scaling-Up Process" (by Lasseter) Slide — 50

History of Production Analysis — Production Analysis:
- History of Production Analysis — Production Analysis Slides — 51-92
- Be familiar with the orientation points provided for Production Analysis Slides — 52
- Be familiar with the historical milestones for Production Analysis Slide — 53
- Be familiar with historical Production Analysis methods — 1920's Slides — 54-58
- Early Data Analysis Plots — Reserves (EUR) versus Average Flowrate (Cartesian) Slide — 56
- Rate-Time Plots: Cartesian, Semilog (rate), and Log-log plots Slides — 57-58
- Be familiar with historical Production Analysis methods — 1940's Slides — 59-63
- Arps' (Empirical) Rate Relations — Exponential, Hyperbolic, and Harmonic Rate Relations Slides — 60-61
- Be familiar with and be able to derive the Arps' Exponential Rate Relation Slide — 62
- Arps' Example Slides — 63
- Be familiar with historical Production Analysis methods — 1960's Slides — 64-72
- Fetkovich: Empirical methods ("depletion" stem (Arps' empirical rate-time relations)) Slides — 65-66
- Fetkovich: Analytical methods ("transient" (analytical) "stems") Slide — 67
- Fetkovich: Composite Type Curve ("transient" (analytical) + "depletion" (Arps' empirical) "stems") Slides — 68-70
- Fetkovich-Carter: Type Curve for gas flow applications (\(p_w = \) constant) Slide — 71
Production Analysis: (continued)

History of Production Analysis — Production Analysis

- Be familiar with historical Production Analysis methods — 1980's .. Slides — 72-84
 - Superposition — Van Everdingen and Meyer Method (rigorous superposition) .. Slides — 73-74
 - Window Analysis — Athianagorn, Horne, and Kikani Method ... Slide — 75
 - Pseudosteady-State Flow Relations — Rate Normalization and Material Balance Time Slides — 76-82
 - Palacio/Blasingame Type Curve — Fetkovich TC, Auxiliary Functions and Material Balance Time ...Slides — 83-84
 - Be familiar with historical Production Analysis methods — 2000's .. Slides — 85-92
 - Orientation to Modern Production Analysis ... Slide — 86
 - Loebel Well Example (from SPE 15482) .. Slides — 87-91
 - Perspectives on the Future of Production Analysis .. Slide — 92

Basic Methods for Production Analysis — Production Analysis

- Basic Methods for Production Analysis — Production Analysis .. Slides — 93-114
 - Be familiar with the Basic Analysis Tools for Production Analysis (PA) [Orientation Page] Slide — 94
 - Arps Plot: Semi-Analytical Rate-Time Analysis: ... Slides — 95-98
 — Be familiar with and be able to use a plot of log(rate) versus time to estimate EUR Slides — 96-99
 — Be familiar with and be able to apply the Arps' rate-time relations ... Slide — 96
 - EUR Plot: Semi-Analytical Rate-Cumulative Analysis: ... Slides — 99-103
 — Be familiar with and be able to use a plot of rate versus cumulative production to estimate EUR Slides — 101-103
 — Be familiar with and be able to apply the Arps' rate-cumulative relations .. Slide — 100
 - Fetkovich (Log-Log) Plot: Type Curve Analysis: (constant pwf) .. Slides — 104-107
 — Be familiar with and be able to use a plot of log(rate) versus log(time) (i.e., "Fetkovich" type curve) Slide — 107
 - Buba Approach: Analytical Gas Solution: (constant pwf) ... Slides — 108-114
 — Be familiar with and be able to use the "Buba" plot (qg versus square of Gp) .. Slides — 108-114
 — Be familiar with and be able to apply the "Buba" rate-cumulative relation to estimate EUR Slides — 111-112

Advanced Analysis Methods for Production Analysis — Production Analysis

- Advanced Analysis Methods for Production Analysis — Production Analysis ... Slides — 115-128
 - Be familiar with the Advanced Analysis Concepts for Production Analysis (PA) [Orientation Page] Slide — 116
 - Exact Superposition Formulation: (Reservoir Model)
 — Be familiar with and be able to apply the (exact) "superposition" relations for flowrate and pressure Slide — 118
 - Superposition Formulation for Pseudosteady-State:
 — Be familiar with and be able to apply the "Black Oil" PSS Equations ... Slide — 120
 — Be familiar with and be able to apply the "Dry Gas" PSS Equations .. Slide — 121
 - Auxiliary Functions:
 — Be familiar and be able to apply the "auxiliary" plotting functions for PA type curve sequence Slides — 122-123
 - Assumptions, Limitations, and Practical Considerations:
 — Be familiar with the data requirements for performing a modern PA sequence Slide — 125
 — Be familiar with the limitations for performing a modern PA sequence ... Slides — 124-127
 — Be familiar and be able to apply the "multiwell" Material Balance Time ... Slide — 128
 - Appendix — Library of Decline Type Curves
 — Be familiar with and be able to use the "Decline Type Curves" included in this library Slides — 129-141

Conclusions Guidelines/Pitfalls/Recommendations — Production Analysis

- Conclusions Guidelines/Pitfalls/Recommendations — Production Analysis .. Slides — 142-149
 - Be familiar with the available PA tools and the issues at present ... Slide — 143
 - Be familiar with the practical guidelines for PA ... Slide — 144
 - Be familiar with the "pitfalls" for PA (pressure and flowrate issues) ... Slide — 145
 - Be familiar with the recommendations/caveats for PA (pressure/flowrate issues, data mgmt., etc.) Slides — 146-147
 - Be familiar with the "reality checks" for PTA/PA (volume averaging, model limitations, etc.) Slide — 148
 - Be familiar with references for Production Analysis ... Slide — 149

Semi-Analytical Rate Relations for Oil and Gas Flow:

- Orientation — Historical Perspectives .. Slide — 1-11
 — "Backpressure" equation ... Slide — 3
 — Arps relations (exponential, hyperbolic, and harmonic) ... Slides — 4-9
 — Derivation of Arps' exponential decline relation .. Slide — 10
 — Validation of Arps' hyperbolic decline relation (Camacho and Raghavan) .. Slide — 11
- Specialized Gas Flow Relations .. Slides — 12-19
 — Fetkovich Gas Flow Relation .. Slides — 14-15
 — Knowles-Ansah-Buba Gas Flow Relation .. Slides — 16-19
- Specialized Oil Flow Relations .. Slides — 20-25
 — Fetkovich Oil Flow Relation .. Slides — 20-25
Semi-Analytical Rate Relations for Oil and Gas Flow: (continued)

- Inflow Performance Relations (IPR) ... Slides — 26-37
 - Early work (for rationale) .. Slides — 28-29
 - Oil IPR and Solution-Gas Drive IPR ... Slides — 30-34
 - Gas Condensate IPR .. Slides — 35-37

Reserves Estimation in Unconventional Reservoirs — New Rate-Time Relations:

- SPE 116731 (Exponential vs. Hyperbolic Decline in Tight Gas Sands) Slides — 2-10
 - Definitions $D(t)$ and $b(t)$ diagnostics functions ... Slide — 4
 - Introduction to "power-law exponential" rate decline model................................. Slide — 5
 - Illustration of diagnostics/behavior for the "power-law exponential" rate decline model Slides — 6-10
- SPE 123298 (A Simple Methodology for Direct Estimation of Gas-in-place and Reserves) .. Slides — 11-15
 - Presentation of the simplified gas rate analysis relation Slides — 12-13
 - Illustration/demonstration of the simplified gas rate analysis relation Slides — 14-15
- SPE 125031 (Decline Curve Analysis for HP/HT Gas Wells: Theory and Applications) Slides — 16-23
 - Presentation of analytical gas flow relations — functions and diagnostic plots Slides — 17-19
 - Demonstration of these analytical gas flow relations ... Slides — 20-24
- SPE 135616 (Hybrid Rate-Decline Models for the Analysis of Production Performance) Slides — 24-34
 - Presentation of a new series of gas flow models for unconventional reservoirs Slides — 25-27
 - Presentation of a new "β-derivative" analysis function Slides — 28-29
 - Demonstration plots for these new rate-decline models Slides — 29-34