Petroleum Engineering 620 — Fluid Flow in Petroleum Reservoirs
Fundamental Flow Lecture 2 — Non-Laminar Flow in Porous Media

He has one of those terribly weak natures that are not susceptible to influence.

— Oscar Wilde (1895)

Topic: Non-Laminar Flow in Porous Media

Objectives: (things you should know and/or be able to do)

- Be familiar with and be able to develop flow relations for gases and compressible liquids, in terms of pressure, pressure-squared, and pseudopressure using the **non-laminar** Forchheimer flow relation, which is quadratic in terms of velocity.

Lecture Outline:

- Developments using the Forchheimer, non-laminar flow relation.
 - Liquid flow relations
 - Gas flow relations
 - Plotting functions

- Various applications of the non-laminar flow equations (discussion)
 - Transient flow (isochronal tests)
 - Pseudosteady-state flow (flow-after-flow tests)

Reading Assignment:

- Review attached notes
Exercises: For your own practice/skills building—do **NOT** turn in!

- Derive the horizontal linear Forchheimer relations for gas flow.
- You are to provide a critical and detailed review (at least 1 page) for the following papers:

For each paper you are to address the following questions: (Type or write neatly)

- **Problem:**
 - What is/are the problem(s) solved?
 - What are the underlying physical principles used in the solution(s)?
- **Assumptions and Limitations:**
 - What are the assumptions and limitations of the solutions/results?
 - How serious are these assumptions and limitations?
- **Practical Applications:**
 - What are the practical applications of the solutions/results?
 - If there are no obvious "practical" applications, then how *could* the solutions/results be used in practice?
- **Discussion:**
 - Discuss the author(s)'s view of the solutions/results.
 - Discuss your own view of the solutions/results.
- **Recommendations/Extensions:**
 - How could the solutions/results be extended or improved?
 - Are there applications other than those given by the author(s) where the solution(s) or the concepts used in the solution(s) could be applied?
Forchheimer Equation for Non-Laminar Flow in Porous Media

(from Petroleum Engineering 620 Course Notes — 1997)
Forchheimer Equation for Non-laminar Flow in Porous Media

The Forchheimer equation for non-laminar flow in porous media is given by

\[-\frac{dp}{dx} = \frac{\mu}{k} \frac{\nu}{k} + c \beta \gamma \nu^2 \] \hspace{1cm} (1)

where,

\[c = \frac{1}{(1.01325 \times 10^6 \text{ dyne cm}^{-2})(12 \text{ in/ft}) (2.54 \text{ cm/1 in})} \]

or

\[c = 5.23794 \times 10^{-8} \text{ dyne cm}^{-2} \frac{cm}{cm^2 \text{ ft}} \]

\[\beta = \text{"inertial flow coefficient," ft}^{-1} \]

By inspection we note that the first term on the right-hand-side (RHS) of Eq. 1 is simply Darcy's law (for laminar flow). The \(c \beta \gamma \nu^2 \) term is the "add-on" term used to account for non-laminar flow.

The average velocity, \(\nu \), is given as

\[\nu = \frac{1}{A} q_{res} = \frac{1}{A} q_{sc} \frac{B}{1} \] \hspace{1cm} (2)

where,

\(\nu = \text{average velocity} \)
\(A = \text{cross-sectional area} \)
\(q_{res} = \text{volumetric flowrate (reservoir volume)} \)
\(q_{sc} = \text{volumetric flowrate ("standard" volume)} \)
\(B = \text{formation volume factor, res vol/std vol} \)

Substituting Eq. 2 into Eq. 1, we obtain

\[-\frac{dp}{dx} = \frac{\mu B}{kA} q_{sc} + \frac{c \beta \gamma B^2}{A^2} q_{sc}^2 \] \hspace{1cm} (3)
For a dry gas, we have

\[\frac{S_g}{\rho_g} = \frac{1}{B_g} \frac{S_g}{S_{sc}} \]

(4)

Substituting Eq. 4 into Eq. 3, we obtain

\[-\frac{dp}{dx} = \frac{mg B_g}{k A} q_{sc} + \frac{C G}{m g A^2} S_{sc} q_{sc} q_{sc} \]

Dividing through by \(mg B_g \)

\[-\frac{1}{mg B_g} \frac{dp}{dx} = \frac{1}{k A} q_{sc} + \frac{C G}{m g A^2} S_{sc} q_{sc} q_{sc} \]

(5)

Multiplying through by \(m_n B_n \) \((m_n = \frac{m}{\rho_n}; B_n = B_g \rho_n)\), we obtain

\[-\frac{m_n B_n}{mg B_g} \frac{dp}{dx} = \frac{m_n B_n}{k A} q_{sc} + \frac{C G}{m g A^2} S_{sc} m_n B_n q_{sc} q_{sc} \]

Separating

\[-\frac{m_n B_n}{mg B_g} \frac{dp}{dx} = \left[\frac{m_n B_n}{k A} q_{sc} + \frac{C G}{m g A^2} S_{sc} m_n B_n q_{sc} q_{sc} \right] dx \]

Integrating

\[-m_n B_n \int_{p_1}^{p_2} \frac{1}{mg B_g} \frac{dp}{dx} = \left[\frac{m_n B_n}{k A} q_{sc} + \frac{C G}{m g A^2} S_{sc} m_n B_n q_{sc} q_{sc} \right] \int_{0}^{l} dx \]

The gas formation volume factor, \(B_g \), is defined as

\[B_g = \frac{P_{sc}}{\rho} \frac{T}{T_{sc}} \frac{z}{z_{sc}} \]

(7)
Substituting Eq. 7 into the integral on the left-hand-side (LHS) of Eq. 6, we have

\[I = -\mu_1 \bar{B}_1 \int_{\bar{p}_1}^{\bar{p}_2} \frac{1}{\mu_1 \bar{E}_1} \frac{p}{\bar{M}_1 \bar{E}_1} \, dp = -\mu_1 \bar{B}_1 \int_{\bar{p}_1}^{\bar{p}_2} \frac{p}{\mu_2} \, dp \] (assume \(T_n = T\))

Using the initial reservoir pressure, \(\bar{p}_1\), as the "normalizing" pressure, \(\bar{p}_n\), we have

\[I = \frac{\mu_1 \bar{B}_1}{\bar{p}_1} \int_{\bar{p}_1}^{\bar{p}_2} \frac{p}{\mu_2} \, dp \] (reversing limits)

Expanding the integral

\[I = \frac{\mu_1 \bar{B}_1}{\bar{p}_1} \int_{\bar{p}_1}^{\bar{p}_2} \frac{p}{\mu_2} \, dp - \frac{\mu_1 \bar{B}_1}{\bar{p}_1} \int_{\bar{p}_1}^{\bar{p}_2} \frac{p}{\mu_2} \, dp \] (8)

Or

\[I = \int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp - \int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp \] (9)

where

\[\rho_p(p) = \frac{\mu_1 \bar{B}_1}{\bar{p}_1} \int_{\bar{p}_1}^{p} \frac{p}{\mu_2} \, dp \] (10)

Substituting Eq. 9 into Eq. 6, we obtain

\[\int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp - \int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp = \left[\frac{\mu_1 \bar{B}_1}{kA} q_{SC} + \frac{cE}{MqA^2} L q_{SC} \frac{\mu_1 \bar{B}_1}{\bar{M} q_{SC}} q_{SC}^2 \right] \int_0^L dx \]

Completing the integration and rearranging

\[\frac{\int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp - \int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp}{L} = \frac{\mu_1 \bar{B}_1}{kA} q_{SC} + \frac{cE}{MqA^2} L q_{SC} \frac{\mu_1 \bar{B}_1}{\bar{M} q_{SC}} q_{SC}^2 \]

Dividing through by \(\frac{\mu_1 \bar{B}_1}{A} q_{SC}\)

\[\frac{A}{\mu_1 \bar{B}_1} \frac{1}{L} \left(\int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp - \int_{\bar{p}_1}^{\bar{p}_2} \rho_p(p) \, dp \right) = \frac{1}{k} + \frac{cE L q_{SC}}{MqA} q_{SC} \] (11)
From Darcy's law (i.e., steady-state laminar flow) we have,

\[q_{sc} = \frac{k_{DL} A \left(P_0(r_1) - P_0(r_2) \right)}{\mu' B' L} \]

or

\[\frac{1}{k_{DL}} = A \frac{1}{\mu' B'} q_{sc} L \] \hspace{1cm} (12)

Substituting Eq. 12 into Eq. 11

\[\frac{1}{k_{DL}} = \frac{1}{k} + \frac{c B q_{sc}}{\mu q A} q_{sc} \] \hspace{1cm} (13)

where Eq. 13 is of the form,

\[y = b + mx \]

where

\[y = \frac{1}{k_{DL}} \quad ; \quad x = q_{sc} \quad ; \quad m = \frac{c B q_{sc}}{\mu q A} \quad \text{and} \quad b = \frac{1}{k} \]

and

\[\mu q = \] is taken at \(\bar{p} = \frac{1}{2} (p_1 + p_2) \)

A plot of Eq. 13 gives

![Graph](image-url)