Petroleum Engineering 620 — Fluid Flow in Petroleum Reservoirs
Reservoir Flow Solutions Lecture 2b — Laplace Transform Solutions
of the Radial Flow Diffusivity Equation for a Bounded Circular Reservoir:
Infinite and Finite-Acting Reservoir Cases

It is bad to be oppressed by a minority, but it is worse to be oppressed by a majority.
— Lord Acton (1907)

Objectives: (things you should know and/or be able to do)

- Be able to derive the particular solutions (in Laplace domain) for a well produced at a constant flowrate in a homogeneous reservoir for the following initial condition, subject to the following inner and outer boundary conditions:
 - Initial Condition (Uniform Pressure Distribution)
 \[p_D(r_D, t_D \leq 0) = 0 \]
 - Inner Boundary Condition (Constant Flowrate at the Well)
 \[r_D \frac{\partial p_D}{\partial r_D} \bigg|_{r_D = 1} = -1 \]
 - Outer Boundary Conditions
 a. "Infinite-Acting" Reservoir
 \[p_D(r_D \to \infty, t_D) = 0 \quad \text{(No reservoir boundary)} \]
 b. "Prescribed Flux" at the Boundary
 \[r_D \frac{\partial p_D}{\partial r_D} \bigg|_{r_D = r_{eD}} = q_{\text{Dex}}(t_D) \quad \text{(Specified flux across the reservoir boundary)} \]
 c. Constant Pressure Boundary
 \[p_D(r_{eD}, t_D) = 0 \quad \text{(Constant pressure at the reservoir boundary)} \]

Particular Solutions in the Laplace Domain

- "Infinite-acting" reservoir behavior: "cylindrical source" solution
 \[\bar{p}_D(r_D, u) = \frac{1}{u} \frac{K_0(\sqrt{u} r_D)}{\sqrt{u} K_1(\sqrt{u})} \]
- "Infinite-acting" reservoir behavior: "line source" solution
 \[\bar{p}_D(r_D, u) = \frac{1}{u} K_0(\sqrt{u} r_D) \quad \text{(where } \sqrt{u} K_1(\sqrt{u}) \to 1; \text{ for } \sqrt{u} \to 0) \]
- "Infinite-acting" reservoir behavior: "log approximation" solution
 \[\bar{p}_D(r_D, u) = \frac{1}{u} K_0(\sqrt{u} r_D) = \frac{1}{2u} \ln \left[\frac{4}{\epsilon^2 \gamma \beta^2 u} \right] (\gamma = 0.577216 \ldots \text{ Euler's Constant}) \]

- Bounded circular res. — "no-flow" at the outer boundary (i.e., \(q_{\text{Dex}}(t_D) = 0 \))
 \[\bar{p}_D(r_D, u) = \frac{1}{u} \frac{K_0(\sqrt{u} r_D) I_1(\sqrt{u} r_{eD}) + K_1(\sqrt{u} r_{eD}) I_0(\sqrt{u} r_D)}{\sqrt{u} K_1(\sqrt{u}) I_1(\sqrt{u} r_{eD}) - \sqrt{u} I_1(\sqrt{u}) K_1(\sqrt{u} r_{eD})} \]

- Bounded circular reservoir — "constant pressure" at the outer boundary
 \[\bar{p}_D(r_D, u) = \frac{1}{u} \frac{K_0(\sqrt{u} r_D) I_0(\sqrt{u} r_{eD}) - K_0(\sqrt{u} r_{eD}) I_0(\sqrt{u} r_D)}{\sqrt{u} K_1(\sqrt{u}) I_0(\sqrt{u} r_{eD}) + \sqrt{u} I_1(\sqrt{u}) K_0(\sqrt{u} r_{eD})} \]
Petroleum Engineering 620 — Fluid Flow in Petroleum Reservoirs
Reservoir Flow Solutions Lecture 2b — Laplace Transform Solutions
of the Radial Flow Diffusivity Equation for a Bounded Circular Reservoir:
Infinite and Finite-Acting Reservoir Cases

Objectives: (Continued)

- Particular Solutions in the Laplace Domain (Continued)
 - Bounded circular reservoir — "prescribed flux" at the outer boundary

\[
\tilde{p}_D(r_D,u) = \frac{1}{u} \cdot \bar{K}_0(\bar{v}r_D) I_1(\bar{v}r_D) + \frac{K_1(\bar{v}r_D)}{\bar{v}u} I_0(\bar{v}r_D) - \frac{1}{u} q_{Dext}(u) \left[\frac{u}{\bar{v}r_D} \cdot \bar{K}_0(\bar{v}r_D) I_1(\bar{v}r_D) + I_0(\bar{v}r_D) \bar{v}u \cdot K_1(\bar{v}r_D) \right] \]

Lecture Outline: (Continued)

- General Approach to Laplace Transform Solutions:
 - Develop Bessel's modified differential equation from the Laplace transform of the diffusivity equation.

Dimensionless Diffusivity Equation

\[
\frac{1}{r_D} \frac{\partial}{\partial r_D} \left[r_D \frac{\partial \tilde{p}_D}{\partial r_D} \right] = \frac{\partial \tilde{p}_D}{\partial r_D} + \frac{1}{r_D} \frac{d}{dr_D} \left[r_D \frac{d\tilde{p}_D}{dr_D} \right] = u \tilde{p}_D
\]

Transformed Diffusivity Equation: (Modified Bessel Function form)

\[
z^2 \frac{d^2 \tilde{p}_D}{dz^2} + z \frac{d \tilde{p}_D}{dz} = z^2 \tilde{p}_D \text{ where } z = \bar{v}r_D.
\]

- Write the appropriate general solution and take the derivative with respect to \(r_D\) of the general solution. These results are:
 - General solution: (Bessel's modified differential equation)
 \[
 \tilde{p}_D(r_D,u) = A I_0(\bar{v}r_D) + B K_0(\bar{v}r_D)
 \]
 - Spatial (Radial) Derivative of the General Solution:
 \[
 \left[r_D \frac{d \tilde{p}_D}{dr_D} \right]_{r_D} = A \bar{v}r_D I_1(\bar{v}r_D) - B \bar{v}r_D K_1(\bar{v}r_D)
 \]

- Boundary Conditions in the Laplace Domain
 - Inner Boundary Condition (Constant Flowrate at the Well)
 \[
 \left[r_D \frac{d \tilde{p}_D}{dr_D} \right]_{r_D=1} = \frac{1}{u}
 \]
 - Outer Boundary Conditions
 a. "Infinite-Acting" Reservoir
 \[
 \tilde{p}_D(r_D \to \infty, u) = 0 \quad \text{(No reservoir boundary)}
 \]
 b. "No Flow" at the Boundary
 \[
 \left[r_D \frac{d \tilde{p}_D}{dr_D} \right]_{r_D=r_eD} = 0 \quad \text{(No flow at the reservoir boundary)}
 \]
Lecture Outline: (Continued)

- General Approach to Laplace Transform Solutions: (Continued)

 c. Constant Pressure Boundary
 \[\overline{p}_{D}(r_{eD}, \mu) = 0 \]
 (Constant pressure at the reservoir boundary)

 d. "Prescribed Flux" at the Boundary
 \[\left[r_{D} \frac{d\overline{p}_{D}}{dr_{D}} \right]_{r_{D}=r_{eD}} = \mathcal{L}[q_{ext}(t_{D})] = \overline{q}_{ext}(\mu) \]
 (Specified flux at boundary)

- Establish the first "equation" by equating the inner boundary condition (constant rate at the well) and the radial derivative of the general solution.

- Establish the second "equation" by equating the desired outer boundary condition ("no-flow," "constant pressure," or "prescribed flux") and either the general solution or its radial derivative, as appropriate.

- Using the two equations/two unknowns approach, solve for the particular solution in the Laplace domain (i.e., the \(A \) and \(B \) parameters) and reduce to the most fundamental algebraic form.

Reading Assignment:

- Review attached notes.
- Solution of the Dimensionless Radial Flow Diffusivity Equation:
 - Laplace transform solutions.

Exercises: For your own practice/skills building—do NOT turn in!

Derivation of Solutions in the Laplace Domain:

From the attached notes you are to rederive the following, and show all details.

- Starting from the dimensionless diffusivity equation, derive the Laplace transform solutions for a well produced at a constant flowrate (inner boundary condition) in a homogeneous reservoir with the following outer boundary conditions:

 - "Infinite-acting" reservoir behavior
 - Bounded circular reservoir — "no-flow" at the outer boundary
 - Bounded circular reservoir — "constant pressure" at the outer boundary
 - Bounded circular reservoir — "prescribed flux" at the outer boundary
Exercises: For your own practice/skills building—do NOT turn in!

Paper Reviews:

- You are to provide a critical and detailed review (at least 1 page) for the following paper(s):

For each paper you are to address the following questions: (Type or write neatly)

- **Problem:**
 - What is/are the problem(s) solved?
 - What are the underlying physical principles used in the solution(s)?

- **Assumptions and Limitations:**
 - What are the assumptions and limitations of the solutions/results?
 - How serious are these assumptions and limitations?

- **Practical Applications:**
 - What are the practical applications of the solutions/results?
 - If there are no obvious "practical" applications, then how could the solutions/results be used in practice?

- **Discussion:**
 - Discuss the author(s)'s view of the solutions/results.
 - Discuss your own view of the solutions/results.

- **Recommendations/Extensions:**
 - How could the solutions/results be extended or improved?
 - Are there applications other than those given by the author(s) where the solution(s) or the concepts used in the solution(s) could be applied?
Log-log Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir: Laplace Transform Solutions—Radial Flow Case (SPE 25479)

Log-log Plot: Error in Laplace Transform Solutions—Radial Flow Case (SPE 25479)
Solution of the Dimensionless Radial Flow Diffusivity Equation:

- Laplace Transform Solutions

Petroleum Engineering 620
Fluid Flow in Reservoirs
Solutions for Radial Flow in a Homogeneous Reservoir: Infinite-Acting,
No-Flow, and Constant Pressure Outer Boundaries - Laplace Transform Approach

The fundamental partial differential equation (the diffusivity equation)
is given in dimensionless form by,
\[
\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = \frac{1}{\beta D} \frac{\partial^2 \phi}{\partial \tau^2} \tag{1}
\]
or
\[
\frac{1}{\beta D} \left[\frac{\partial}{\partial \tau} \frac{\partial \phi}{\partial \tau} \right] = \frac{\partial \phi}{\partial \tau_D} \tag{2}
\]
where
\[
\beta = \frac{r}{\tau_D} \quad \phi = \frac{k}{2\mu c_w} \quad \tau = \frac{r^2 \phi}{k} \quad \frac{1}{\beta D} = \frac{2\pi}{\mu c_w r^2} \tag{3}
\]
where \(\tau_D \) and \(\beta \) are given by

<table>
<thead>
<tr>
<th>Darcy Units</th>
<th>Field Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_D)</td>
<td>(2.637 \times 10^{-4})</td>
<td>(3.557 \times 10^{-6})</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(7.081 \times 10^{-5})</td>
<td>(5.856 \times 10^{-4})</td>
</tr>
</tbody>
</table>

The initial condition is given as
\[
\phi(r, \tau_D = 0) = 0 \quad \text{(uniform pressure distribution)} \tag{4}
\]
The constant rate inner boundary condition is
\[
\left. \frac{\partial \phi}{\partial \tau_D} \right|_{\tau_D = 1} = -1 \quad \text{(constant flow rate at the well)} \tag{5}
\]
The outer boundary conditions are given by:

a. "Infinite-acting" outer boundary condition
\[
\phi(r = \infty, \tau_D) = 0 \tag{6}
\]
b. "No-flow" outer boundary condition
\[
\left. \frac{\partial \phi}{\partial \tau_D} \right|_{r = \tau_D} = \phi_{\text{ext}} \tag{7}
\]
c. "Constant pressure" outer boundary condition
\[
\phi(r = r_D, \tau_D) = \phi_{\text{ext}} = 0 \quad \text{(constant at initial pressure)} \tag{8}
\]
d. "Specified flux" outer boundary condition
\[
\left. \frac{\partial \phi}{\partial \tau_D} \right|_{r = r_D} = \phi_{\text{ext}}(\tau_D) \tag{9}
\]

Laplace Transform Formulation: \(\mathcal{L}(\phi(r, \tau_D)) \), \(\mu = \) Laplace transform parameter
Taking the Laplace transform of Eq. 2 gives
\[
\frac{1}{\beta D} \left[\frac{\partial}{\partial \tau} \frac{\partial \phi}{\partial \tau} \right] = \mathcal{L}(\phi(r, \tau_D = 0) \left[\frac{\partial}{\partial \tau} \right] \mathcal{L}(d\tau) = \frac{d\mathcal{L}(\phi)}{d\tau_D} \tag{10}
\]
We recognize from Eq. 6 that \(y_b(r_b, t=0) = 0 \), combining Eqs. 6 and 12 we obtain
\[
\frac{d}{dr_b} \left[\frac{v_b d^2 \bar{p}}{d r_b^2} \right] = u_c \bar{p} \tag{13}
\]
Taking the Laplace transform of the inner boundary condition gives
\[
\left[\frac{v_b}{d r_b} \right]_{r_b=1} = \frac{-1}{u_c} \tag{14}
\]
Taking the Laplace transform of the outer boundary conditions,
a. Laplace transform of the "infinite-acting" outer boundary condition
\[
\bar{p}_b(r_b, \mu) = 0 \tag{15}
\]
b. Laplace transform of the "no-flow" outer boundary condition
\[
\left[\frac{v_b d \bar{p}}{d r_b} \right]_{r_b=R_0} = 0 \tag{16}
\]
c. Laplace transform of the "constant pressure" outer boundary condition
\[
\frac{v_b}{r_b} \left\{ \Phi_r \left(R_0, \mu \right) \right\} = \frac{P_{ext}}{u_c} = 0 \text{ (constant at initial pressure)} \tag{17}
\]
d. Laplace transform of the "prescribed flux" outer boundary condition
\[
\left[\frac{v_b d \bar{p}}{d r_b} \right]_{r_b=R_0} = \Phi_r \left(R_0, \mu \right) \tag{18}
\]
Multiplying through Eq. 18 by \(v_b^2 \) we have
\[
\frac{v_b}{r_b} \left[\frac{v_b d \bar{p}}{d r_b} \right] = u_c \bar{p} \tag{19}
\]
Defining a variable of substitution, \(z \), as follows
\[
z = \sqrt{u_c} v_b \tag{20}
\]
or
\[
r_b = z / \sqrt{u_c} \tag{21}
\]
Applying the chain rule on the \(dv_b/dr_b \) terms in Eq. 19 we obtain
\[
\frac{v_b}{r_b} \frac{d}{dz} \left[\frac{v_b}{r_b} \frac{d \bar{p}}{dz} \right] = u_c \bar{p} \tag{22}
\]
where
\[
\frac{dv_b}{dz} = \frac{dv_b}{d (\sqrt{u_c} r_b)} = \sqrt{u_c} \tag{23}
\]
Substituting Eqs. 21 and 23 into Eq. 22 we have
\[
\frac{z}{\sqrt{u_c}} \frac{d}{dz} \left[\frac{z}{\sqrt{u_c}} \frac{d \bar{p}}{dz} \right] = \frac{z^2 \bar{p}}{u_c} \tag{24}
\]
Cancelling the \sqrt{z} terms on the left-hand-side we obtain
\[\frac{\partial}{\partial z} \left[\frac{1}{r^2} \frac{\partial v}{\partial r} \right] = \frac{1}{r^2} \frac{\partial v}{\partial r} \]
\text{(24)}

Expanding the left-hand-side terms we have
\[\frac{1}{r^2} \frac{\partial v}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial \theta} = \frac{1}{r^2} \frac{\partial v}{\partial r} \]
\text{(25)}

From Abramowitz and Stegun, *Handbook of Mathematical Functions*, (p. 374, Eq. 9.6.1), the modified Bessel differential equation is given by
\[\frac{d^2 w}{dz^2} + \frac{z}{d^2} dw = (z^2 + 4) w \]
\text{(26)}

The general solution of Eq. 26 is given by
\[w = A I_0 (z) + B K_0 (z) \]
\text{(27)}

where the functions $I_0(z)$ and $K_0(z)$ are the modified Bessel functions of the first and second kinds, respectively. By inspection, our general solution is
\[\tilde{v}_0 (z) = A I_0 (z) + B K_0 (z) \]
\text{(28)}

or, substituting $z = \sqrt{v_0}$ (Eq. 20) into Eq. 28 we have
\[\tilde{v}_0 (v_0, u) = A I_0 (\sqrt{u} v_0) + B K_0 (\sqrt{u} v_0) \]
\text{(29)}

In order to develop our particular solutions (i.e., to solve for the A and B parameters for each set of boundary conditions), we require the $\frac{d \tilde{v}_0}{dr_0}$ term. Using the chain rule we obtain
\[\frac{d \tilde{v}_0}{dr_0} = \frac{xz}{d \rho} \frac{d \tilde{v}_0}{d \rho} \]
\text{(30)}

Substituting Eq. 23 into Eq. 30
\[\frac{d \tilde{v}_0}{dr_0} = \sqrt{u} \frac{d \tilde{v}_0}{d \rho} \]
\text{(31)}

and the $\frac{d \tilde{v}_0}{dz}$ term is given by
\[\frac{d \tilde{v}_0}{dz} = A \frac{d I_0 (z)}{dz} + B \frac{d K_0 (z)}{dz} \]
\text{(32)}

From Abramowitz and Stegun, *Handbook of Mathematical Functions*, we have
\[\frac{d I_0 (z)}{dz} = I_1 (z) \quad \text{(Eq. 9.6.27, p. 376)} \]
\text{(33)}

\[\frac{d K_0 (z)}{dz} = -K_1 (z) \quad \text{(Eq. 9.6.27, p. 376)} \]
\text{(34)}
Substituting Eqs. 33 and 34 into Eq. 32 we have
\[
\frac{d\bar{P}}{d\bar{z}} = AI_1(\bar{z}) - BK_1(\bar{z})
\]
(35)

Combining Eqs. 50 and 55, and substituting \(\bar{z} = \sqrt{\mu} \bar{r}_D \) (Eq. 28) into Eq. 55 we obtain
\[
\frac{d\bar{P}}{d\bar{r}_D} = A \sqrt{\mu} I_1(\sqrt{\mu} \bar{r}_D) - B \sqrt{\mu} K_1(\sqrt{\mu} \bar{r}_D)
\]
(56)

Multiplying through by \(\bar{r}_D \) gives
\[
\left[\bar{r}_D \frac{d\bar{P}}{d\bar{r}_D} \right] = A \sqrt{\mu} \bar{r}_D I_1(\sqrt{\mu} \bar{r}_D) - B \sqrt{\mu} \bar{r}_D K_1(\sqrt{\mu} \bar{r}_D)
\]
(57)

//

Summarizing our efforts so far:

General Solution in Laplace Domain
\[
\bar{\Phi}_D(\bar{r}_D, \mu) = A I_0(\sqrt{\mu} \bar{r}_D) + B K_0(\sqrt{\mu} \bar{r}_D)
\]
(29)

Radial Derivative of the General Solution in Laplace Domain
\[
\left[\bar{r}_D \frac{d\bar{\Phi}_D}{d\bar{r}_D} \right] = A \sqrt{\mu} \bar{r}_D I_1(\sqrt{\mu} \bar{r}_D) - B \sqrt{\mu} \bar{r}_D K_1(\sqrt{\mu} \bar{r}_D)
\]
(37)

Laplace transform of boundary conditions:

Inner Boundary Condition -
\[
\left[\bar{r}_D \frac{d\bar{P}}{d\bar{r}_D} \right]_{\bar{r}_D = 1} = -\frac{1}{\mu} \quad \text{(constant rate at well)}
\]
(14)

Outer Boundary Conditions -

a. "infinite-acting" reservoir
\[
\bar{P}_B(\bar{r}_D = \infty, \mu) = 0
\]
(15)

b. "no-flow" outer boundary condition
\[
\left[\bar{r}_D \frac{d\bar{P}}{d\bar{r}_D} \right]_{\bar{r}_D = \bar{r}_D} = 0
\]
(16)

c. "constant pressure" outer boundary condition
\[
\bar{P}_B(\bar{r}_D = \bar{r}_D, \mu) = 0
\]
(17)

d. "prescribed flux" outer boundary condition
\[
\left[\bar{r}_D \frac{d\bar{P}}{d\bar{r}_D} \right]_{\bar{r}_D = \bar{r}_D} = \bar{\Phi}_{D,\text{ext}}(\mu)
\]
(18)

Our goal is to use the boundary conditions to determine the A and B parameters. Our first step is to use the constant rate inner boundary condition (Eq. 14) as a starting point then combine this condition with each outer boundary condition.
condition in order to determine \(A \) and \(B \) for each case.

Starting with the inner boundary condition (Eq. 14) and the derivative of the general solution (Eq. 37) we have

\[
A \sqrt{\omega} I_1(\sqrt{\omega} l) - B \sqrt{\omega} K_1(\sqrt{\omega} l) = \frac{-1}{m}
\]

or

\[
A \sqrt{\omega} I_1(\sqrt{\omega} l) - B \sqrt{\omega} K_1(\sqrt{\omega} l) = \frac{-1}{m} \tag{38}
\]

Outer Boundary Case 1: Infinite-acting reservoir

Combining Eqs. 29 and 15 we have

\[
\lim_{r \to \infty} \left[A I_0(\sqrt{\omega} r_o) + B K_0(\sqrt{\omega} r_o) \right] = 0 \tag{39}
\]

Given that we are taking the limit as \(r_o \to 0 \), we must establish the behavior of \(I_0(x \to \infty) \) and \(k_0(x \to \infty) \). Considering the behavior of \(I_0(x) \) and \(k_0(x) \) we have

\[
\lim_{x \to 0^+} I_0(x) = 0
\]

and

\[
\lim_{x \to 0^+} k_0(x) = 0
\]

Since \(I_0(x \to \infty) = \infty \), then \(A(\infty) + B(\infty) = 0 \); therefore \(A = 0 \). In order for the solution to be bounded. Setting \(A = 0 \) we solve Eq. 38 for \(B \), which gives

\[
B = \frac{1}{m} \frac{1}{\sqrt{\omega} K_1(\sqrt{\omega} l)} \tag{40}
\]

and of course

\[
A = 0 \tag{41}
\]

Substituting Eqs. 40 and 41 into the general solution (Eq. 29) we obtain the particular solution for the infinite-acting reservoir case. This result is

\[
I_0(r_o, \omega) = \frac{1}{m} \frac{K_0(\sqrt{\omega} r_o)}{\sqrt{\omega} K_1(\sqrt{\omega} l)} \tag{42}
\]

Eq. 42 is called the cylindrical source solution.
Unfortunately, Eq. 42 is not readily invertible—therefore we will attempt to reduce Eq. 42 into a more usable form. From Abramowitz and Stegun, *Handbook of Mathematical Functions*, p. 375, Eq. 9.6.19 (for $v=1$) we have

$$k_v(x) = \frac{1}{x} \quad \text{for } x \rightarrow 0$$

or, multiplying through by x we have

$$xk_v(x) = 1 \quad \text{as } x \rightarrow 0$$

for our case we have

$$\sqrt{\alpha} k_v(\sqrt{\alpha}) = 1 \quad \text{for } \sqrt{\alpha} \quad \text{(or } \mu) \rightarrow 0$$

Combining this result with Eq. 42 we obtain

$$P \Theta (\rho, \mu) = \frac{1}{\mu} k_v(\sqrt{\alpha} \rho) \quad \text{as } \mu \rightarrow 0 \quad (43)$$

Eq. 43 is called the line source solution and can be inverted directly.

Eq. 43 can be reduced further to yield a logarithmic relation that is commonly referred to as the "log approximation." In order to develop this result we require an approximation for $k_v(x)$ as $x \rightarrow 0$. From Abramowitz and Stegun, *Handbook of Mathematical Functions*, (Eq. 9.6.11, p. 375) we have

$$k_v(x) = \left[-\frac{\ln \left(\frac{1}{x} \right) + 1}{1} \right] I_v(x) + \frac{1}{(11)^2} \left[\frac{1}{4} x^2 \right] + \left[\frac{1}{2} \right] \left[\frac{1}{11} \right] \left[\frac{1}{2} \right] \left[\frac{1}{4} \right] x^2 + \ldots$$

where we note that as $x \rightarrow 0$, then $x^2 \rightarrow 0$, which reduces to

$$k_v(x) \approx \frac{\ln \left(\frac{1}{x} \right)}{e^{z x}} I_v(x) \quad \text{as } x \rightarrow 0$$

or multiplying and dividing by z we have

$$k_v(x) \approx \frac{1}{z} \ln \left(\frac{4}{e^{2z} \frac{1}{x^2}} \right) I_v(x) \quad \text{as } x \rightarrow 0 \quad (44)$$

The behavior of $I_v(x)$ in the vicinity of $x \rightarrow 0$ is obtained using the series representation provided in Abramowitz and Stegun, *Handbook of Mathematical Functions*, (Eq. 9.6.12, p. 375). This expression is

$$I_v(x) = 1 + \frac{1}{(11)^2} \left[\frac{1}{4} x^2 \right] + \frac{1}{(21)^2} \left[\frac{1}{4} x^2 \right] + \frac{1}{(31)^2} \left[\frac{1}{4} x^2 \right] + \ldots$$

where as $x \rightarrow 0$ we have

$$I_v(x) = 1 \quad \text{as } x \rightarrow 0 \quad (45)$$
Combining Eqs. 44 and 45
\[k_0(x) \approx \frac{1}{2} \ln \left(\frac{4}{e^{2T} x^2} \right) \quad \text{as } x \to 0 \]
(46)

Substituting Eq. 46 into Eq. 48 we obtain
\[\bar{P}_0(r_0, \mu) = \frac{1}{2m} \ln \left(\frac{4}{e^{2T} r_0^2 \mu} \right) \quad \text{as } \mu \to 0 \]
(47)

or in a form more amenable to inversion we have
\[\bar{P}_0(r_0, \mu) = -\frac{1}{2m} \ln(\mu) + \frac{1}{2m} \ln \left(\frac{4}{e^{2T} r_0^2} \right) \]
(48)

Outer Boundary Case 2: No-Flow outer boundary
Combining Eqs. 37 and 16 we obtain
\[A \sqrt{r_0} I_1(\sqrt{r_0}) - B \sqrt{r_0} k_1(\sqrt{r_0}) = 0 \]
(49)

Solving for the B parameter we obtain
\[B = \frac{A I_1(\sqrt{r_0})}{k_1(\sqrt{r_0})} \]
(50)

Recalling the inner boundary condition, Eq. 38, we have
\[A \sqrt{r_0} I_1(\sqrt{r_0}) - B \sqrt{r_0} k_1(\sqrt{r_0}) = -1 \]
(58)

Combining Eqs. 50 and 58 we obtain
\[A \sqrt{r_0} I_1(\sqrt{r_0}) - A \sqrt{r_0} k_1(\sqrt{r_0}) I_1(\sqrt{r_0}) = -\frac{1}{m} \]
or
\[A \left[\sqrt{r_0} I_1(\sqrt{r_0}) k_1(\sqrt{r_0}) - \sqrt{r_0} k_1(\sqrt{r_0}) I_1(\sqrt{r_0}) \right] = -\frac{1}{m} k_1(\sqrt{r_0}) \]

or solving for A we have
\[A = \frac{k_1(\sqrt{r_0})}{m \left[\sqrt{r_0} k_1(\sqrt{r_0}) I_1(\sqrt{r_0}) - \sqrt{r_0} I_1(\sqrt{r_0}) k_1(\sqrt{r_0}) \right]} \]
(51)

Substituting Eq. 51 into Eq. 50 we obtain
\[B = \frac{k_1(\sqrt{r_0})}{I_1(\sqrt{r_0})} \]
(52)

Substituting Eqs. 51 and 52 into the general solution Eq. 29, gives
\[\bar{P}_0(r_0, \mu) = \frac{k_0(\sqrt{r_0}) I_1(\sqrt{r_0}) + k_1(\sqrt{r_0}) I_0(\sqrt{r_0})}{m \left[\sqrt{r_0} k_1(\sqrt{r_0}) I_1(\sqrt{r_0}) - \sqrt{r_0} I_1(\sqrt{r_0}) k_1(\sqrt{r_0}) \right]} \]
(53)
As before, in the case of an infinite-acting reservoir, we showed
\[\int_0^\infty k(\mu) = 1 \quad \text{as } \mu \to 0 \]
Similarly from Abramowitz and Stegun, Handbook of Mathematical Functions, (Eq. 9.6.7, p. 375) we have
\[I_1(x) \approx \frac{1}{2} x \]
or
\[xI_1(x) \approx \frac{1}{2} x^2 \]
where as \(x \to 0 \) we have
\[xI_1(x) = 0 \quad \text{as } x \to 0 \]
or for our present problem we have
\[\sqrt{\mu} I_1(\sqrt{\mu}) = 0 \quad \text{as } \mu \to 0 \]
Combining these relations with Eq. 58 we obtain
\[\frac{\bar{p}_0}{p_0} = \frac{1}{m} k_0(\sqrt{\mu} p_0) + \frac{1}{m} k_1(\sqrt{\mu} p_0) I_0(\sqrt{\mu} p_0) \tag{54} \]
\[\text{as } \mu \to 0 \]

Outer Boundary Case 3: Constant pressure outer boundary
Combining Eqs. 29 and 17 we have
\[A I_0(\sqrt{\mu} p_0) + B k_0(\sqrt{\mu} p_0) = 0 \tag{55} \]
Solving for the \(B \) parameter we obtain
\[B = -\frac{A I_0(\sqrt{\mu} p_0)}{k_0(\sqrt{\mu} p_0)} \tag{56} \]
Recalling the inner boundary condition, Eq. 38, gives us
\[A\sqrt{\mu} I_1(\sqrt{\mu}) = B \sqrt{\mu} k_1(\sqrt{\mu}) = -\frac{1}{m} \tag{57} \]
Substituting Eq. 56 into Eq. 38 we have
\[A\sqrt{\mu} I_1(\sqrt{\mu}) + A \sqrt{\mu} k_1(\sqrt{\mu}) I_0(\sqrt{\mu} p_0) = -\frac{1}{m} \frac{k_0(\sqrt{\mu} p_0)}{k_0(\sqrt{\mu} p_0)} \]
or
\[A \left[\sqrt{\mu} I_1(\sqrt{\mu}) k_0(\sqrt{\mu} p_0) + \sqrt{\mu} k_1(\sqrt{\mu}) I_0(\sqrt{\mu} p_0) \right] = -\frac{1}{m} \frac{k_0(\sqrt{\mu} p_0)}{k_0(\sqrt{\mu} p_0)} \]
or solving for \(A \) we have
\[A = -\frac{k_0(\sqrt{\mu} p_0)}{m \left[\sqrt{\mu} I_1(\sqrt{\mu}) k_0(\sqrt{\mu} p_0) + \sqrt{\mu} k_1(\sqrt{\mu}) I_0(\sqrt{\mu} p_0) \right]} \tag{57} \]
Substituting Eq. 57 into Eq. 56 gives
\[B = \frac{I_0(\sqrt{\mu} p_0)}{m \left[\sqrt{\mu} I_1(\sqrt{\mu}) k_0(\sqrt{\mu} p_0) + \sqrt{\mu} k_1(\sqrt{\mu}) I_0(\sqrt{\mu} p_0) \right]} \tag{58} \]
Substituting Eqs. 57 and 58 into the general solution, Eq. 29, we obtain

\[P_0(r_0, \mu) = \frac{k_0(\mu r_0) I_0(\mu r_0) - k_2(\mu r_0) I_0(\mu r_0)}{m \left[k_0(k_0 I_0(\mu r_0) + \sqrt{\mu I_0(\mu r_0) k_0(\mu r_0)} \right]} \]

(57)

As in the previous cases, we want to consider the behavior as \(\mu \to 0 \) (large \(r_0 \)). As before, we have

\[\sqrt{\mu I_0(\mu r)} = 1 \quad \text{as} \quad \mu \to 0 \]

\[\sqrt{\mu I_0(\mu r)} = 0 \quad \text{as} \quad \mu \to 0 \]

Combining these relations with Eq. 59, we obtain

\[P_0(r_0, \mu) = \frac{1}{m} \frac{k_0(\mu r_0)}{I_0(\mu r_0)} - \frac{1}{m} \frac{k_2(\mu r_0)}{I_0(\mu r_0)} I_0(\mu r_0) \]

(60)

(as \(\mu \to 0 \))

Outer Boundary Case 4: "Prescribed flux" outer boundary

Combining Eqs. 37 and 18 we obtain

\[A \sqrt{\mu r_0} I_0(\sqrt{\mu r_0}) - B \sqrt{\mu r_0} k_1(\sqrt{\mu r_0}) = \bar{P}_{0,\text{ext}} \]

(61)

Recalling the inner boundary condition, Eq. 58, we have

\[A \sqrt{\mu r} I_0(\sqrt{\mu r}) - B \sqrt{\mu r} k_1(\sqrt{\mu r}) = -1 \]

(62)

We will solve Eqs. 61 and 58 simultaneously to determine \(A \) and \(B \). The algebra becomes a bit tedious, but we will show all steps. Solving for the \(A \) parameter we divide through Eq. 61 by \(\sqrt{\mu r_0} k_1(\sqrt{\mu r_0}) \), then we divide through Eq. 58 by \(\sqrt{\mu r} k_1(\sqrt{\mu r}) \). These operations give

\[A \frac{\sqrt{\mu r_0} I_0(\sqrt{\mu r_0})}{\sqrt{\mu r} k_1(\sqrt{\mu r})} - B = \bar{P}_{0,\text{ext}} \frac{1}{\sqrt{\mu r_0} k_1(\sqrt{\mu r_0})} \]

(63)

Subtracting Eq. 63 from Eq. 62 we have

\[A \left[\sqrt{\mu r_0} I_0(\sqrt{\mu r_0}) - \sqrt{\mu r} I_0(\sqrt{\mu r}) \right] = \bar{P}_{0,\text{ext}} \frac{1}{\sqrt{\mu r_0} k_1(\sqrt{\mu r_0})} + \frac{1}{m} \frac{1}{\sqrt{\mu r} k_1(\sqrt{\mu r})} \]

Expanding to yield a uniform denominator on both sides

\[A \frac{\sqrt{\mu r_0} I_0(\sqrt{\mu r_0}) - \sqrt{\mu r} I_0(\sqrt{\mu r})}{\sqrt{\mu r_0} k_1(\sqrt{\mu r_0}) \sqrt{\mu r} k_1(\sqrt{\mu r})} = \frac{\bar{P}_{0,\text{ext}} \sqrt{\mu r_0} k_1(\sqrt{\mu r_0}) + \sqrt{\mu r_0} k_1(\sqrt{\mu r_0})}{\sqrt{\mu r_0} k_1(\sqrt{\mu r_0}) \sqrt{\mu r} k_1(\sqrt{\mu r})} \]
Solving for \(A \) we have
\[
A = \frac{1}{\mu} \sqrt{k_1 (\text{ref})} \left[\nu k_{\text{rep}} + \bar{q}_{\text{ext}} \sqrt{\mu} k_1 (\text{ref}) \right] \left(\sqrt{I_1 (\text{ref})} \sqrt{I_{\text{rep}}} - \sqrt{I_1 (\text{ref})} \sqrt{V_{\text{rep}}} k_1 (\text{ref}) \right)
\]

Factoring out the \(\sqrt{V_{\text{rep}}} \) terms and bringing out the \(\nu \) factor
\[
A = \frac{1}{\mu} \frac{k_1 (\text{ref})}{\sqrt{k_1 (\text{ref})} I_1 (\text{ref}) - \sqrt{I_1 (\text{ref})} k_1 (\text{ref})}
\]

Comparing Eq. 64 to the result for the no-flow boundary case (Eq. 51) we have
\[
A_f = \frac{1}{\mu} \frac{k_1 (\text{ref})}{\sqrt{k_1 (\text{ref})} I_1 (\text{ref}) - \sqrt{I_1 (\text{ref})} k_1 (\text{ref})}
\]

where we find that Eq. 64 is identical to Eq. 51 for the \(q_{\text{ext}} = 0 \) case.

Solving for the \(B \) parameter we divide through Eq. 61 by \(\sqrt{V_{\text{rep}}} I_1 (\text{ref}) \) and we divide through Eq. 68 by \(\sqrt{I_1 (\text{ref})} \), which gives
\[
A = \frac{-B \sqrt{V_{\text{rep}}} k_1 (\text{ref})}{\sqrt{V_{\text{rep}}} I_1 (\text{ref})} = \bar{q}_{\text{ext}} \frac{1}{\sqrt{V_{\text{rep}}} I_1 (\text{ref})}
\]

\[
A = \frac{-B \sqrt{V_{\text{rep}}} k_1 (\text{ref})}{\sqrt{I_1 (\text{ref})}} = -\frac{1}{\mu} \frac{1}{\sqrt{V_{\text{rep}}} I_1 (\text{ref})}
\]

Subtracting Eq. 66 from Eq. 65 we have
\[
B \left[-\sqrt{V_{\text{rep}}} k_1 (\text{ref}) + \sqrt{V_{\text{rep}}} k_1 (\text{ref}) \right] = \bar{q}_{\text{ext}} \frac{1}{\sqrt{V_{\text{rep}}} I_1 (\text{ref})} + \frac{1}{\mu} \frac{1}{\sqrt{I_1 (\text{ref})}}
\]

Expanding to yield a uniform denominator on both sides gives
\[
B \left[\frac{-\sqrt{V_{\text{rep}}} k_1 (\text{ref}) + \sqrt{V_{\text{rep}}} k_1 (\text{ref}) \sqrt{V_{\text{rep}}} I_1 (\text{ref})}{\sqrt{V_{\text{rep}}} I_1 (\text{ref})} \right] = \left[\bar{q}_{\text{ext}} \sqrt{V_{\text{rep}}} I_1 (\text{ref}) + \frac{1}{\mu} \sqrt{V_{\text{rep}}} I_1 (\text{ref}) \right]
\]

Solving for \(B \) we have
\[
B = \frac{1}{\mu} \frac{\sqrt{V_{\text{rep}}} I_1 (\text{ref}) + \bar{q}_{\text{ext}} \sqrt{V_{\text{rep}}} I_1 (\text{ref})}{\sqrt{k_1 (\text{ref})} \sqrt{V_{\text{rep}}} I_1 (\text{ref}) - \sqrt{I_1 (\text{ref})} \sqrt{V_{\text{rep}}} k_1 (\text{ref})}
\]

As before, factoring out the \(\sqrt{V_{\text{rep}}} \) terms and bringing out the \(\mu \) factor
\[
B = \frac{1}{\mu} \frac{I_1 (\text{ref})}{\sqrt{k_1 (\text{ref})} I_1 (\text{ref}) - \sqrt{I_1 (\text{ref})} k_1 (\text{ref})}
\]

Comparing Eq. 67 with the result for the no-flow boundary case we recall Eq. 52
\[
B_f = \frac{1}{\mu} \frac{I_1 (\text{ref})}{\sqrt{k_1 (\text{ref})} I_1 (\text{ref}) - \sqrt{I_1 (\text{ref})} k_1 (\text{ref})}
\]
where we find that Eq. 67 is identical to Eq. 52 for \(q_{\text{ext}} = 0 \). Having shown this for both A and B we have verified these results.

In order to determine the particular solution for this case, we substitute Eqs. 64 and 67 into the general solution (Eq. 29). This gives

\[
\bar{\alpha}_d (\hat{r}, \hat{m}) = \frac{1}{m} \frac{k_0 (\sqrt{I}_d \hat{r}_d) I_1 (\sqrt{I}_d \hat{r}_{d0}) + I_0 (\sqrt{I}_d \hat{r}_d) k_1 (\sqrt{I}_d \hat{r}_{d0})}{\sqrt{I}_d k_1 (\sqrt{I}_d \hat{r}_d) I_1 (\sqrt{I}_d \hat{r}_{d0}) - \sqrt{I}_d I_0 (\sqrt{I}_d \hat{r}_d) k_1 (\sqrt{I}_d \hat{r}_{d0})}
\]

\[+ \frac{1}{m} \bar{\alpha}_{d, \text{ext}} \left(\frac{\hat{m}}{\sqrt{I}_{d0}} \right) \frac{k_0 (\sqrt{I}_d \hat{r}_d) \sqrt{I}_1 (\sqrt{I}_d \hat{r}_d) + I_0 (\sqrt{I}_d \hat{r}_d) \sqrt{k}_1 (\sqrt{I}_d \hat{r}_d)}{\sqrt{I}_d k_1 (\sqrt{I}_d \hat{r}_d) I_1 (\sqrt{I}_d \hat{r}_{d0}) - \sqrt{I}_d I_0 (\sqrt{I}_d \hat{r}_d) k_1 (\sqrt{I}_d \hat{r}_{d0})}
\]

where the first part of Eq. 68 is exactly Eq. 53, the solution for the no-flow boundary case (i.e., \(\bar{\alpha}_d = 0 \)). Note that \(\bar{\alpha}_{d, \text{ext}} = \bar{\alpha} (\hat{r}, \hat{m}) \).

As with the previous cases we can consider the behavior of Eq. 68 as \(\hat{m} \to 0 \). As we saw before

\[\sqrt{I}_d k_1 (\sqrt{I}_d \hat{r}_d) \to 1 \text{ as } \hat{m} \to 0\]

\[\sqrt{I}_d I_0 (\sqrt{I}_d \hat{r}_d) \to 0 \text{ as } \hat{m} \to 0\]

Combining these relations with Eq. 68 gives

\[
\bar{\alpha}_d (\hat{r}, \hat{m}) = \frac{1}{m} \frac{k_0 (\sqrt{I}_d \hat{r}_d)}{I_1 (\sqrt{I}_d \hat{r}_{d0})}
\]

\[+ \frac{1}{m} \bar{\alpha}_{d, \text{ext}} \left(\frac{\hat{m}}{\sqrt{I}_{d0}} \right) \frac{k_0 (\sqrt{I}_d \hat{r}_d) \sqrt{I}_1 (\sqrt{I}_d \hat{r}_d) + I_0 (\sqrt{I}_d \hat{r}_d) \sqrt{k}_1 (\sqrt{I}_d \hat{r}_d)}{\sqrt{I}_d k_1 (\sqrt{I}_d \hat{r}_d) I_1 (\sqrt{I}_d \hat{r}_{d0}) - \sqrt{I}_d I_0 (\sqrt{I}_d \hat{r}_d) k_1 (\sqrt{I}_d \hat{r}_{d0})}
\]

The second term in Eq. 68 (or 69) should not be arbitrarily reduced without a comprehensive study of the interplay of individual terms. For example, reduction using the behavior of \(I_1 (x) \) and \(k_1 (x) \) as \(x \to 0 \) yields \(I_0 (\sqrt{I}_d \hat{r}_d) I_1 (\sqrt{I}_d \hat{r}_{d0}) \) which tends to \(1 / 0 \to \infty \) as \(\hat{m} \to 0 \). Considerable care must be exercised when making such reductions.