Petroleum Engineering 620 — Fluid Flow in Petroleum Reservoirs
Reservoir Flow Solutions Lecture 2c — Real Domain Solutions of the Radial Flow Diffusivity Equation for a Well Produced at a Constant Rate in a Bounded Circular Reservoir: Infinite and Finite-Acting Reservoir Cases

Resistance to tyrants is obedience to God.
— Thomas Jefferson (motto)

Topic: Real Domain Solutions of the Radial Flow Diffusivity Equation for a Well Produced at a Constant Rate in a Bounded Circular Reservoir: Infinite and Finite-Acting Reservoir Cases

Objectives: (things you should know and/or be able to do)
- Be able to derive the following particular solutions in the real domain using the appropriate Laplace transform solutions for an unfractured well produced at a constant flowrate in a homogeneous reservoir for the following outer boundary conditions:
 - "Infinite-acting" reservoir behavior (line source solution)
 \[p_D(t_D, r_D) = \frac{1}{2} E_1 \left[\frac{r_D^2}{4t_D} \right] \]
 - "Infinite-acting" reservoir behavior (the so-called "log approximation," also a line source solution)
 \[p_D(t_D, r_D) = \frac{1}{2} \ln \left[\frac{4}{\pi \cdot e} \right] \ln \left(\frac{r_D}{r_D^*} \right) \]
 - Bounded circular reservoir — "no-flow" at the outer boundary
 \[p_D(t_D, r_D, r_{eD}) = \frac{1}{2} E_1 \left[\frac{r_D^2}{4t_D} \right] - \frac{1}{2} E_1 \left[\frac{r_{eD}^2}{4t_D} \right] + \frac{2t_D}{r_{eD}^2} \exp \left[-\frac{r_{eD}^2}{4t_D} \right] \exp \left[-\frac{r_D^2}{4t_D} \right] \]
 and its "well testing" derivative function, \(p_D' = \frac{d}{dt_D} [p_D(r_D, t_D)] \) is given by
 \[p_D'(t_D, r_D, r_{eD}) = \frac{1}{2} \exp \left[-\frac{r_D^2}{4t_D} \right] + \frac{2t_D}{r_{eD}^2} \exp \left[-\frac{r_{eD}^2}{4t_D} \right] + \frac{1}{2t_D} \left[r_D^2 - \frac{r_{eD}^2}{8} \right] \exp \left[-\frac{r_{eD}^2}{4t_D} \right] \]
 - Bounded circular reservoir — "constant pressure" at the outer boundary
 \[p_D(t_D, r_D, r_{eD}) = \frac{1}{2} E_1 \left[\frac{r_D^2}{4t_D} \right] - \frac{1}{2} E_1 \left[\frac{r_{eD}^2}{4t_D} \right] + \frac{1}{8t_D} (r_{eD}^2 - r_D^2) \exp \left[-\frac{r_{eD}^2}{4t_D} \right] \]
 and its "well testing" derivative function, \(p_D' = \frac{d}{dt_D} [p_D(r_D, t_D)] \) is given by
 \[p_D'(t_D, r_D, r_{eD}) = \frac{1}{2} \exp \left[-\frac{r_D^2}{4t_D} \right] - \frac{1}{2} \exp \left[-\frac{r_{eD}^2}{4t_D} \right] + \frac{1}{8t_D} (r_{eD}^2 - r_D^2) \frac{r_{eD}^2}{4t_D} \exp \left[-\frac{r_{eD}^2}{4t_D} \right] \]

Lecture Outline:
- Development of solutions in the real domain:
 - "Infinite-acting" reservoir behavior (line source solution)
 - Cylindrical source solution not directly invertable (in closed form).
 - Bounded circular reservoir — "no-flow" at the outer boundary
 - Inversion of line source solution using recursion relations and polynomial expansions for Bessel functions (for behavior near zero).
Lecture Outline: (Continued)

- Development of solutions in the real domain: (Continued)
 - Bounded circular reservoir — "no-flow" at the outer boundary (Continued)
 - Derivatives taken explicitly from real domain solution rather than Laplace transform solutions. Can check directly, term-by-term.
 - Bounded circular reservoir — "constant pressure" at the outer boundary
 - Inversion of the line source solution using recursion relations and polynomial expansions for Bessel functions (for behavior near zero).
 - Derivatives taken explicitly from real domain solution rather than Laplace transform solutions. Can check directly, term-by-term.

- Discussion of Applications
 - Modelling of well performance (transient and pseudosteady-state performance, variable-rate superposition).
 - Development of short- and long-term analysis relations.

Reading Assignment:

- Review attached notes.
 - Solution of the Dimensionless Radial Flow Diffusivity Equation:
 - Real domain solutions via inversion of the Laplace transform solutions.

Exercises: For your own practice/skills building—do NOT turn in!

From the attached notes you are to rederive the following, and show all details.

- Starting from the Laplace transform solutions, derive the real domain solution(s) for an unfractured well produced at a constant flowrate (inner boundary) in a homogeneous reservoir with the following outer boundary condition(s):
 - Bounded circular reservoir — "no-flow" at the outer boundary
 - Bounded circular reservoir — "prescribed" at the outer boundary
 - Bounded circular reservoir — "constant pressure" at the outer boundary
Log-log Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir: Dimensionless Pressure Solutions—Radial Flow Case (SPE 25479)

Semilog Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir: Dimensionless Pressure Solutions—Radial Flow Case (SPE 25479)
Log-log Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir: Dimensionless Pressure and Derivative—Radial Flow Case (SPE 25479)

Log-log Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir—Various r_D: Dimensionless Pressure and Derivative—Radial Flow Case (SPE 25479)
Log-log Plot: Constant Well Rate Solutions for a Constant Pressure Outer Boundary: Dimensionless Pressure and Derivative—Radial Flow Case (SPE 25479)

Log-log Plot: Constant Wellbore Pressure Solutions for a Bounded Circular Reservoir: Dimensionless Rate Functions—Radial Flow Case (SPE 25479)
Solution of the Dimensionless Radial Flow Diffusivity Equation:

- Real Domain Solutions via Inversion of the Laplace Transform Solutions

Solutions for a Bounded Circular Reservoir: Infinite-Acting, No-Flow, and Constant Pressure Boundary Cases

The Laplace transform solutions under consideration are:

a. Infinite-Acting Reservoir Case:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} \left(\frac{k_D(vr_D)}{\sqrt{\mu} k_1(\mu r_D)} \right) \quad \text{(cylindrical source solution)} \]
(1)

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} k_D(\mu r_D) \quad \text{(line source solution)} \]
(2)

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{2\mu} \ln \left(\frac{4 + \frac{1}{\mu r_D^2}}{1} \right) \quad \text{(as \(\mu \to \infty \), log approximation)} \]
(3)

b. No-Flow Boundary Case:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} \left(k_D(\mu r_D) I_0(\mu r_D) + k_1(\mu r_D) I_0(\mu r_D) \right) \]
(4)

where for \(\mu \to \infty \), Eq. 4 reduces to:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} k_D(\mu r_D) + \frac{1}{M} k_1(\mu r_D) I_0(\mu r_D) \quad \text{(line source)} \]
(5)

C. Constant Pressure Outer Boundary Case:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} \left(\frac{k_D(\mu r_D) I_0(\mu r_D) - k_0(\mu r_D) I_0(\mu r_D)}{I_1(\mu r_D) + I_0(\mu r_D)} \right) \]
(6)

where for \(\mu \to \infty \), Eq. 6 reduces to:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{M} \frac{k_D(\mu r_D) - k_0(\mu r_D) I_0(\mu r_D)}{I_0(\mu r_D)} \quad \text{(line source)} \]
(7)

Solutions for an Infinite-Acting Reservoir:

a. Cylindrical source solution:

Unfortunately, Eq. 1 cannot be inverted directly to yield a closed form, non-infinite series or integral solution. However, van Everdingen and Hurst give the following results:

\[\bar{\phi}_D(r_D, \mu) = \frac{1}{\pi} \int_0^\infty \left[1 - e^{-\mu r_D^2} \right] \left[J_0(\mu r_D) Y_0(\mu r_D) + Y_0(\mu r_D) J_0(\mu r_D) \right] \, d\mu \]
(8)

and for the wellbore solution \(r_D = 1 \), Eq. 8 reduces to:

\[\bar{\phi}_D(1, \mu) = \frac{4}{\pi^2} \int_0^\infty \left[1 - e^{-\mu r_D^2} \right] \, d\mu \]
(9)
b. Line Source Solution:
Recalling Eq. 2 we have
\[
\phi_b(r, t_0, \omega) = \frac{1}{\mu} k_0(\omega r_0)
\]
(2)

Multiplying through Eq. 2 by the Laplace transform parameter, \(\mu \), gives
\[
\mu \phi_b(r, \mu) = k_0(\omega r_0)
\]
\(\mu \)
(10)

Recalling the time derivative theorem for Laplace transforms we have
\[
L\left\{ \frac{d[f(t)]}{dt} \right\} = \mu \mathcal{F}(\mu) - f(t=0)
\]
(11)

assuming that \(f(t=0) \), which is true by our initial condition, we can similarly write
\[
\frac{d[f(t)]}{dt} = \mathcal{L}^{-1}\{\mu \mathcal{F}(\mu)\}
\]
(12)

or in terms of our problem we have
\[
\frac{d}{dt_0} \left[\phi_b(r, t_0) \right] = \mathcal{L}^{-1}\{\mu \phi_b(r, \mu)\}
\]
(13)

Combining Eqs. 10 and 13
\[
\frac{d}{dt_0} \left[\phi_b(r, t_0) \right] = \mathcal{L}^{-1}\{k_0(\omega r_0)\}
\]
(14)

Inversion of Eqs. 2 and 10 is accomplished by the use of Laplace transform tables, where the results of inversion are given below

<table>
<thead>
<tr>
<th>(\mathcal{F}(\mu))</th>
<th>(f(t))</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\mu} k_0(\omega a))</td>
<td>(\frac{1}{2} E_1 \left(\frac{a^2}{4t} \right))</td>
<td>Carslaw and Jaeger: Conduction of Heat in Solids, Table V, Eq. 26, p. 495.</td>
</tr>
<tr>
<td>(k_0(\omega a))</td>
<td>(\frac{1}{2} \exp \left(\frac{-a^2}{4t} \right))</td>
<td>Abramowitz and Stegun: Handbook of Mathematical Functions, Table 29.3, Eq. 29.3.120, p. 1028, and Roberts and Kaufman: Table of Laplace Transforms, Section 2, Eq. 13.2.1, p. 304.</td>
</tr>
</tbody>
</table>

Making the appropriate substitutions
\[
\phi_b(r, t_0) = \frac{1}{2} E_1 \left(\frac{r_0^2}{4t_0} \right)
\]
(15)

and
\[
\frac{d}{dt_0} \left[\phi_b(r, t_0) \right] = \frac{1}{2t_0} \exp \left(\frac{-r_0^2}{4t_0} \right)
\]
(16)
Defining the so-called "well testing derivative" we have
\[p'(r_0, t_0) = t_0 \frac{d}{dt_0} \left[p'(t_0, t_0) \right] \]
(17)

Substituting Eq. 16 into Eq. 17 we have
\[p'(r_0, t_0) = \frac{1}{2} \exp \left(-\frac{r_0^2}{4t_0} \right) \]
(18)

C. Log-Approximation Solution:
Recalling Eq. 3 we have
\[p'(r_0, u) = \frac{1}{2M} \ln \left(\frac{4}{e^{2x} r_0^2 u} \right) \]
(19)

Expanding Eq. 3 into a more usable form, we have
\[p'(r_0, u) = \frac{1}{2} \ln \left(-\ln(u) + \frac{1}{M} \ln \left(\frac{4}{e^{2x} r_0^2 u} \right) \right) \]
(19)

Rather than attempt a derivative using \(u \), we will simply differentiate the inversion result of Eq. 19. The inverse Laplace transform of the \(\ln(u) \) and constant terms in Eq. 19 we have

<table>
<thead>
<tr>
<th>(\ln(u))</th>
<th>(\ln(t) + \chi) or (\ln(e^{t_0}))</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\frac{1}{2} \ln(u))</td>
<td>(\ln(t) + \chi) or (\ln(e^{t_0}))</td>
<td>Abramowitz and Stegun: Handbook of Mathematical Functions, Table 29.3, Eq. 29.3.98, p. 1027.</td>
</tr>
<tr>
<td>(\frac{1}{M} \ln \left(\frac{4}{e^{2x} r_0^2 u} \right))</td>
<td>(\ln \left(\frac{4}{e^{2x} r_0^2 u} \right))</td>
<td>(trivial) Abramowitz and Stegun: Handbook of Mathematical Functions, Table 29.3, Eq. 29.3.91, p. 1021.</td>
</tr>
<tr>
<td>(\frac{1}{M}) constant</td>
<td>(\frac{1}{M}) constant</td>
<td></td>
</tr>
</tbody>
</table>

Writing the \(p'(r_0, t_0) \) inversion result for Eq. 19 is
\[p'(r_0, t_0) = \frac{1}{2} \ln \left(e^{t_0} \right) + \ln \left(\frac{4}{e^{2x} r_0^2} \right) \]
(19)

Collecting
\[p'(r_0, t_0) = \frac{1}{2} \ln \left(\frac{4}{e^{t_0} r_0^2} \right) \]
(20)
Isolating the t_D term in Eq. 20 we have
\[
P_D(r_0, t_D) = \frac{1}{2} \left[\frac{1}{t_D} \ln(t_D) + \frac{1}{2} \ln \left(\frac{4 \pi}{\varepsilon^2 r_0^2} \right) \right] (21)
\]
Substituting Eq. 21 into Eq. 17 to determine the well testing derivative we have
\[
P_D'(r_0, t_D) = t_D \left[\frac{d}{dt_D} \left(\frac{1}{t_D} \ln(t_D) \right) \right] + t_D \left[\frac{d}{dt_D} \left(\frac{1}{2} \ln \left(\frac{4 \pi}{\varepsilon^2 r_0^2} \right) \right) \right]
\]
which reduces to
\[
P_D'(r_0, t_D) = t_D \left[\frac{1}{2t_D} \right] = \frac{1}{2}
\]

Solution for a No-Flow Outer Boundary

It is not possible to invert the complete solution (Eq. 4) for this case so we will attempt an approximate solution of the line source form (Eq. 5). Recalling Eq. 5 we have
\[
\bar{P}(r_0, \infty) = \frac{1}{m} k_0(\varepsilon r_0) + \frac{1}{\mu} \frac{k_1(\varepsilon r_0)}{I_1(\varepsilon r_0)} I_0(\varepsilon r_0)
\]

We immediately recognize that the first term in Eq. 5 is the solution for an infinite-acting reservoir, and given the linearity of the inverse Laplace transform, we can invert Eq. 5 to yield
\[
P_D(r_0, t_D) = P_D(\varepsilon r_0, t_D) + \mathcal{L}^{-1} \left\{ \frac{1}{m} \frac{k_1(\varepsilon r_0)}{I_1(\varepsilon r_0)} I_0(\varepsilon r_0) \right\}
\]

where
\[
P_D(\varepsilon r_0, t_D) = \frac{1}{2} E_1 \left(\frac{r_0^2}{4t_D} \right)
\]

So what is our strategy to invert the second term in Eq. 23? First we will use recursion relations to express the $k_n(z)$ Bessel functions then consider a two-term expansion of the resulting $I_0(z)/I_1(z)$ ratio. Recall that as $z \to 0$ that $I_0(z) \to 1$ and $I_1(z) \to 0$, which permits polynomial expansions.

From Abramowitz and Stegun, *Handbook of Mathematical Functions* (Eq. 9.6.15, p. 875) we have
\[
I_0(z) k_{n+1}(z) + I_{n+1}(z) k_n(z) = \frac{1}{z}
\]

Using $n = 0$
\[
I_0(z) k_1(z) + I_1(z) k_0(z) = \frac{1}{z}
\]
Using \(n = 1 \) we have
\[
I_1(z)k_2(z) + I_2(z)k_1(z) = \frac{1}{z}
\] (26)

Equate Eqs. 25 and 26 we have
\[
I_0(z)k_1(z) + I_1(z)k_0(z) = I_1(z)k_2(z) + I_2(z)k_1(z)
\]
\[
k_2(z)[I_0(z) - I_1(z)] = I_1(z)[k_1(z) - k_0(z)]
\]

or solving for \(k_1(z) \)
\[
k_1(z) = \frac{I_1(z)}{\frac{I_0(z) - I_1(z)}{k_2(z) - k_0(z)}}
\] (27)

Recalling the first recursion relation in Eq. 9.6.26, p. 376, Abramowitz and Stegun, Handbook of Mathematical Functions, in terms of \(I_n(z) \)
\[
I_{n-1}(z) - I_{n+1}(z) = \frac{2n}{z} I_n(z)
\]

for \(n = 1 \) we have
\[
I_0(z) - I_2(z) = \frac{2}{z} I_1(z)
\]

rearranging
\[
\frac{I_1(z)}{\frac{I_0(z) - I_2(z)}{2}} = \frac{z}{2}
\] (28)

Substituting Eq. 28 into Eq. 27 we have
\[
k_1(z) = \frac{z}{2} \left[k_2(z) - k_0(z) \right]
\] (29)

Substituting Eq. 29 into Eq. 23 gives
\[
\varphi_\rho_\varphi_\rho_0 = \varphi_\rho_0 \varphi_\rho_0 + \sum \left[\frac{1}{n} \frac{1}{z} \left(\sqrt{\varphi_\rho_\rho_0} - \varphi_\rho_\rho_0 \right) \right] I_0 \left(\sqrt{\varphi_\rho_\rho_0} \right)
\] (30)

Considering the \(I_0(b)/I_1(a) \) term, where \(b = \sqrt{\varphi_\rho_\rho_0} \) and \(a = \sqrt{\varphi_\rho_\rho_0} \), we will use the polynomial expansions for \(I_0(z) \) and \(I_1(z) \) taken from the general \(I_n(z) \) series given in Abramowitz and Stegun, Handbook of Mathematical Functions, Eq. 9.6.10, p. 375 we have
\[
I_0(z) = 1 + \frac{z^2}{4} + \frac{z^4}{64} + \frac{z^6}{2304} + \ldots
\] (31)

and
\[
I_1(z) = \frac{z}{2} \left[1 + \frac{z^2}{8} + \frac{z^4}{192} + \frac{z^6}{9216} + \ldots + \right]
\] (32)

Using two term expansions for \(I_0(b) \) and \(I_1(a) \) we have
\[
I_0(b) = 1 + \frac{b^2}{4}
\] (33)

and
\[
I_1(a) = \frac{a}{z} \left(1 + \frac{a^2}{8} \right)
\] (34)
Establishing the $I_0(b)/I_1(a)$ ratio using Eqs. 33 and 34 we have

$$\frac{I_0(b)}{I_1(a)} = \frac{z}{a} \frac{1 + b^2/4}{(1 + a^2/8)} \tag{35}$$

assuming $a^2/8 < 1$ we can express $(1 + a^2/8)^{-1}$ as a binomial series of the form $(1 + x)^{-1}$ from Abramowitz and Stegun, Handbook of Mathematical Functions, Eq. 3.6.10, p. 15, we have

$$(1 + x)^{-1} = 1 - x + x^2 - x^3 + \cdots \quad (1 \leq |x| < 1)$$

using a two term expansion of $(1 + a^2/8)^{-1}$ we have

$$(1 + a^2/8)^{-1} = 1 - a^2/8 \tag{36}$$

Substituting Eq. 36 into Eq. 35 we have

$$\frac{I_0(b)}{I_1(a)} = \frac{z}{a} \frac{1 + b^2/4}{(1 - a^2/8)}$$

Expanding

$$\frac{I_0(b)}{I_1(a)} = \frac{z}{a} \left(1 + \frac{b^2}{4} - \frac{a^2}{8} - \frac{a^2 b^2}{32} \right)$$

neglecting the $a^2 b^2 / 32$ term we have

$$\frac{I_0(b)}{I_1(a)} = \frac{z}{a} \left(1 + \frac{b^2}{4} - \frac{a^2}{8} \right) \tag{37}$$

Recalling that $b = \sqrt{\alpha_0}$ and $a = \sqrt{\alpha_0 r_0}$ and substituting Eq. 37 into Eq. 30

$$\rho_b(r_0, t_0) = \rho_{b, \inf}(r_0, t_0) + \mathcal{L}^{-1} \left\{ \frac{1}{a} \left[k_z(r_0) - k_0(r_0) \right] \frac{z}{4} \left(1 - \frac{a^2}{8} + \frac{b^2}{4} \right) \right\}$$

Cancelling the $a/4$ terms and using $a = \sqrt{\alpha_0 r_0}$ and $b = \sqrt{\alpha_0}$

$$\rho_b(r_0, t_0) = \rho_{b, \inf}(r_0, t_0) + \mathcal{L}^{-1} \left\{ k_z(r_0) - k_0(r_0) \right\} \left(1 - \frac{\alpha_0 r_0^2}{4} + \frac{\alpha_0 z^2}{4} \right)$$

Continuing the expansion

$$\rho_b(r_0, t_0) = \rho_{b, \inf}(r_0, t_0) + \mathcal{L}^{-1} \left\{ \left(\frac{\alpha_0 r_0^2}{4} - \frac{\alpha_0 z^2}{8} \right) k_z(r_0) - \left(\frac{\alpha_0 z^2}{4} - \frac{\alpha_0 r_0^2}{8} \right) k_0(r_0) \right\} \tag{38}$$

For reference, we note the Laplace transform of Eq. 38

$$\rho_b(r_0, t_0) = \frac{1}{\mathcal{M}} k_0(\sqrt{\alpha_0} r_0) + \frac{1}{\mathcal{M}} k_z(\sqrt{\alpha_0} r_0) - \frac{1}{\mathcal{M}} k_0(\sqrt{\alpha_0} r_0) + \left(\frac{\alpha_0 z^2}{4} - \frac{\alpha_0 r_0^2}{8} \right) k_z(\sqrt{\alpha_0} r_0) - \left(\frac{\alpha_0 z^2}{4} - \frac{\alpha_0 r_0^2}{8} \right) k_0(\sqrt{\alpha_0} r_0) \tag{39}$$
Multiplying through Eq. 39 by the laplace transform parameter, \(\mu \), gives

\[
\mu \mathcal{F} \left(F_0 \right) = \mathcal{F} \left(k_0 (\nabla \cdot \mathbf{u}) \right) + k_2 (\nabla \cdot \mathbf{u}) \mathcal{F} \left(\mathbf{u}_0 \right) - k_0 (\nabla \cdot \mathbf{u}_0) + \left(\frac{\mu}{4} - \frac{\mu_0}{8} \right) \frac{1}{4} \mathcal{F} \left(k_0 (\nabla \cdot \mathbf{u}) \mathcal{F} \left(\mathbf{u}_0 \right) - \frac{\mu_0}{8} \mathcal{F} \left(k_0 (\nabla \cdot \mathbf{u}) \mathcal{F} \left(\mathbf{u}_0 \right) \right) \right) (40)
\]

We will take the inverse laplace transform of Eqs. 39 and 40 using the following tables

<table>
<thead>
<tr>
<th>(\mathcal{F} \left(\frac{1}{\mu} \right))</th>
<th>(\mathcal{F} \left(\frac{1}{2} \right))</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_0 (\nabla \cdot \mathbf{u}))</td>
<td>(E_1 \left(\frac{a^2}{4t} \right))</td>
<td>Carlaw and Jaeger: Conduction of Heat in Solids, Table V, Eq. 26, p. 495.</td>
</tr>
<tr>
<td>(k_0 (\nabla \cdot \mathbf{u}))</td>
<td>(\frac{1}{2t}) (\exp \left(-\frac{a^2}{4t} \right))</td>
<td>Abramowitz and Stegun: Handbook of Mathematical Functions, Table 29.3, Eq. 29.3.120, p. 1028.</td>
</tr>
<tr>
<td>(\frac{1}{\mu}) (k_2 (\nabla \cdot \mathbf{u}))</td>
<td>(\frac{2t}{a^2} \exp \left(-\frac{a^2}{4t} \right))</td>
<td>Roberts and Kaufman: Table of Laplace Transforms, Section 2, Eq. 13.2.1, p. 304.</td>
</tr>
<tr>
<td>(\frac{1}{\mu}) (k_2 (\nabla \cdot \mathbf{u}))</td>
<td>(\frac{2t}{a^2}) (\Gamma \left(\frac{3}{2}, \frac{a^2}{4t} \right))</td>
<td>Roberts and Kaufman: Table of Laplace Transforms, Section 2, Eq. 13.2.13, p. 306.</td>
</tr>
<tr>
<td>(\frac{2t}{a^2}) (\left(\frac{1}{2t} + \frac{z}{a^2} \right) \exp \left(-\frac{a^2}{4t} \right))</td>
<td></td>
<td>Roberts and Kaufman: Table of Laplace Transforms, Section 2, Eq. 13.2.14, p. 306.</td>
</tr>
</tbody>
</table>
Inverting Eq. 39 term-by-term using the previous table gives

\[
P_D(r, t) = \frac{1}{Z} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{Z} \left(\frac{r_{D0}^2}{4t_0} \right) + \frac{Z}{r_{D0}^2} \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

\[
+ \left(\frac{r_0^2 - r_{D0}^2}{4} \right) \left(\frac{1}{Zt_0} + \frac{2}{Zr_{D0}^2} \right) \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

\[
- \left(\frac{r_0^2 - r_{D0}^2}{4} \right) \frac{1}{t_0} \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

Collecting

\[
P_D(r, t) = \frac{1}{Z} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{Z} \left(\frac{r_{D0}^2}{4t_0} \right)
\]

\[
+ \left[\frac{z}{r_{D0}^2} \left(\frac{1}{Zt_0} + \frac{2}{Zr_{D0}^2} \right) - c \left(\frac{1}{Zt_0} \right) \right] \exp \left(-\frac{r_{D0}^2}{4t_0} \right), \quad \text{where} \quad c = \left[(r_0^2/4) - (r_{D0}^2/8) \right]
\]

cancelling the c/2t_0 terms

\[
P_D(r, t) = \frac{1}{Z} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{Z} \left(\frac{r_{D0}^2}{4t_0} \right) + \frac{Z}{r_{D0}^2} \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

\[
+ \frac{2}{r_{D0}^2} \left(\frac{r_0^2 - r_{D0}^2}{4} \right) \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

which yields the following reduction

\[
P_D(r, t) = \frac{1}{Z} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{Z} \left(\frac{r_{D0}^2}{4t_0} \right) + t_0 \exp \left(-\frac{r_{D0}^2}{4t_0} \right) + \frac{Z}{r_{D0}^2} \left(\frac{r_0^2}{4} - \frac{1}{4t_0} \right) \exp \left(-\frac{r_{D0}^2}{4t_0} \right) \quad (41)
\]

Segmenting the solution into particular flow regimes

\[
P_D(r, t) = \frac{1}{Z} \left(\frac{r_0^2}{4t_0} \right) + \frac{2}{r_{D0}^2} \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

\[
\text{--- Infinite-Acting-Reservoir Term (Reservoir Size)}
\]

\[
\text{--- Material Balance Term (Reservoir Size)}
\]

\[
- \frac{1}{Z} \left(\frac{r_{D0}^2}{4t_0} \right) + \frac{Z}{r_{D0}^2} \left(\frac{r_0^2}{4} - \frac{1}{4t_0} \right) \exp \left(-\frac{r_{D0}^2}{4t_0} \right)
\]

\[
\text{--- Reservoir Shape Effects Terms}
\]
Due to conflicting results obtained by inverting Eq. 40 term-by-term, we will proceed by differentiating Eq. 42.

Note that
\[
\frac{d}{dt_D} \frac{d E_1(x)}{dx} = \frac{d}{dt_D} \frac{d}{dx} \left[\frac{d x}{d t_D} \left[- \exp(-x) \right] \right] = \frac{d}{dt_D} \left[\frac{d x}{d t_D} \left[\frac{-\exp(-x)}{x} \right] \right] \tag{43}
\]
and
\[
\frac{d}{dt_D} \frac{d \exp(x)}{dx} = \frac{d}{dt_D} \frac{d}{dx} \left[\frac{d x}{d t_D} \left[- \exp(-x) \right] \right] = \frac{d}{dt_D} \left[\frac{d x}{d t_D} \left[- \exp(-x) \right] \right] \tag{44}
\]

Differentiating Eq. 42 term-by-term
\[
\frac{d}{dt_D} \left[\frac{1}{2} \frac{d x}{d t_D} \left(\frac{r_D^2}{4 t_D} \right) \right] = \frac{1}{2} \frac{d}{dt_D} \left(\frac{r_D^2}{4 t_D} \right) \left(-\frac{4 t_D}{r_D^2} \right) \exp \left(\frac{-r_D^2}{4 t_D} \right) \nonumber
\]
\[
= \frac{1}{2} \left(\frac{-r_D^2}{4 t_D^2} \right) \left(-\frac{4 t_D}{r_D^2} \right) \exp \left(\frac{-r_D^2}{4 t_D} \right) \nonumber
\]
\[
= \frac{1}{2} \left(\frac{-r_D^2}{4 t_D^2} \right) \exp \left(\frac{-r_D^2}{4 t_D} \right) \left(\frac{-r_D^2}{4 t_D} \right) \tag{45}
\]
or
\[
\frac{d}{dt_D} \left[\frac{1}{2} \frac{d x}{d t_D} \left(\frac{r_D^2}{4 t_D} \right) \right] = \frac{1}{2t_D} \exp \left(\frac{-r_D^2}{4 t_D} \right) \tag{45}
\]

Similarly for \(\frac{d}{dt_D} \left[\frac{1}{2} \frac{d x}{d t_D} \left(\frac{r_D^2}{4 t_D} \right) \right] \) we have
\[
\frac{d}{dt_D} \left[\frac{1}{2} \frac{d x}{d t_D} \left(\frac{r_D^2}{4 t_D} \right) \right] = \frac{1}{2t_D} \exp \left(\frac{-r_D^2}{4 t_D} \right) \tag{46}
\]

Next we have
\[
\frac{d}{dt_D} \left[\frac{z}{r_D^2} \frac{t_D}{t_D} \exp \left(\frac{-r_D^2}{4 t_D} \right) \right] = \frac{z}{r_D^2} \left[\exp \left(\frac{-r_D^2}{4 t_D} \right) \frac{dt_D}{dt_D} + t_D \frac{d}{dt_D} \left[\exp \left(\frac{-r_D^2}{4 t_D} \right) \right] \right] \nonumber
\]
\[
= \frac{z}{r_D^2} \left[1 + t_D \frac{d}{dt_D} \left(\frac{-r_D^2}{4 t_D} \right) \right] \exp \left(\frac{-r_D^2}{4 t_D} \right) \nonumber
\]
\[
= \frac{z}{r_D^2} \left[1 + \frac{r_D^2}{4 t_D} \right] \exp \left(\frac{-r_D^2}{4 t_D} \right) = \left[\frac{z}{r_D^2} + \frac{1}{4 t_D} \right] \exp \left(\frac{-r_D^2}{4 t_D} \right) \tag{47}
\]

Similarly
\[
\frac{d}{dt_D} \left[\left(\frac{r_D^2}{4 t_D} - \frac{1}{4} \right) \frac{r_D^2}{4 t_D} \exp \left(\frac{-r_D^2}{4 t_D} \right) \right] = \left(\frac{r_D^2}{4 t_D} - \frac{1}{4} \right) \frac{r_D^2}{4 t_D} \exp \left(\frac{-r_D^2}{4 t_D} \right) \nonumber
\]
\[
= \frac{1}{2t_D^2} \left[\frac{r_D^2}{4} - \frac{r_D^2}{8} \right] \exp \left(\frac{-r_D^2}{4 t_D} \right) \tag{48}
\]
Collecting the derivative terms we have
\[\frac{d}{dt} \left[P_B(r_0,t_0) \right] = \frac{1}{2t_0} \exp \left(-\frac{r_0^2}{4t_0} \right) - \frac{1}{2t_0} \exp \left(-\frac{r_0^2}{4t_0} \right) \]
\[+ \left[\frac{2}{r_0^2} + \frac{1}{z t_0} \right] \exp \left(-\frac{r_0^2}{4t_0} \right) + \frac{1}{z t_0} \left[\frac{r_0^2}{4} + \frac{r_0^2 - r_0^2}{8} \right] \exp \left(-\frac{r_0^2}{4t_0} \right) \]

Collecting further
\[\frac{d}{dt} \left[P_B(r_0,t_0) \right] = \frac{1}{2t_0} \exp \left(-\frac{r_0^2}{4t_0} \right) + \left[\frac{1}{2z t_0} \frac{r_0^2}{r_0^2} + \frac{1}{2z t_0} \frac{r_0^2}{r_0^2} \right] \exp \left(-\frac{r_0^2}{4t_0} \right) \]

Multiplying through by \(t_0 \) we have
\[P_B'(r_0,t_0) = t_0 \frac{d}{dt} \left[P_B(r_0,t_0) \right] \]

or
\[P_B'(r_0,t_0) = \frac{1}{2z t_0} \left(\frac{r_0^2}{4} + \frac{r_0^2 - r_0^2}{8} \right) \exp \left(-\frac{r_0^2}{4t_0} \right) \]

\[\text{Infinite-Acting Reservoir Term} \]

\[\text{Material Balance Term (Reservoir Size)} \]

\[\text{Reservoir Shape Effects Term} \]

Solution for Constant Pressure Outer Boundary:

Similar to the no-flow outer boundary case, we cannot directly invert Eq. 6, so we will attempt an approximate solution of the line source form (Eq. 7). Recalling Eq. 7 we have
\[P_B(r_0,\eta) = \frac{1}{4} \frac{k_0(\eta r_0)}{M} - \frac{1}{4} \frac{k_0(\eta r_0)}{M} I_0(\eta r_0) \] (line source) (7)

Recalling the polynomial approximation for \(I_0(\eta) \) (Eq. 31) we have
\[I_0(\eta) = 1 + \eta^2 + \frac{\eta^4}{64} + \frac{\eta^6}{2304} + \ldots \] (81)

Using a two-term approximation for the \(I_0(\eta r_0) / I_0(\eta r_0) \)
\[\frac{I_0(\eta r_0)}{I_0(\eta r_0)} = 1 + \frac{\eta r_0^2}{4 \eta r_0^2} \]

Using a two-term binomial series for \((1 + \frac{\eta r_0^2}{14})^{-1} \) we have
\[\frac{I_0(\eta r_0)}{I_0(\eta r_0)} = \left(1 + \frac{\eta r_0^2}{4 \eta r_0^2} \right) \left(1 - \frac{\eta r_0^2}{4 \eta r_0^2} \right) \]

or
\[\frac{I_0(\eta r_0)}{I_0(\eta r_0)} = \frac{1 + \eta r_0^2 - \eta r_0^2}{4} - \frac{1}{16} \] (50)
Substituting Eq. 50 into Eq. 47 gives us

$$
 \frac{\bar{Q}_D(r_0, \mu)}{\bar{Q}_D(r_0, \mu)} = \frac{1}{\mu} k_0(\sqrt{r_0}) - \frac{1}{\mu} k_0(\sqrt{r_0}) (1 + \frac{\mu r_0^2 - \mu r_0^2}{4} - \mu r_0^2 \frac{r_0^2}{16})
$$

or

$$
 \frac{\bar{Q}_D(r_0, \mu)}{\bar{Q}_D(r_0, \mu)} = \frac{1}{\mu} k_0(\sqrt{r_0}) - \frac{1}{\mu} k_0(\sqrt{r_0}) + \frac{1}{16} (r_0^2 - r_0^2) k_0(\sqrt{r_0}) - \mu r_0^2 \frac{r_0^2}{16} k_0(\sqrt{r_0})
$$

for simplicity, we will ignore the term in Eq. 51, this gives

$$
 \frac{\bar{Q}_D(r_0, \mu)}{\bar{Q}_D(r_0, \mu)} = \frac{1}{\mu} k_0(\sqrt{r_0}) - \frac{1}{\mu} k_0(\sqrt{r_0}) + \frac{1}{16} (r_0^2 - r_0^2) k_0(\sqrt{r_0})
$$

From our previous efforts we recall that

$$
 \frac{1}{2} k_0(\sqrt{a}) = \frac{1}{2} E_1 \left(\frac{a^2}{4t} \right)
$$

Inverting Eq. 52 term-by-term we have

$$
 \frac{1}{2} k_0(\sqrt{a}) = \frac{1}{2} E_1 \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{2} E_1 \left(\frac{r_0^2}{4t_0} \right) + \frac{1}{8} \exp \left(-\frac{r_0^2}{4t_0} \right)
$$

Reservoir Shape Effects Terms

Differentiating Eq. 53 term-by-term, we simply recall Eqs. 45 and 46

$$
 \frac{d}{dt_0} \left[\frac{1}{2} E_1 \left(\frac{r_0^2}{4t_0} \right) \right] = \frac{1}{2} \exp \left(-\frac{r_0^2}{4t_0} \right)
$$

$$
 \frac{d}{dt_0} \left[\frac{1}{2} E_1 \left(\frac{r_0^2}{4t_0} \right) \right] = \frac{1}{2} \exp \left(-\frac{r_0^2}{4t_0} \right)
$$

Differentiating the last term in Eq. 53 we have

$$
 \frac{d}{dt_0} \left[\frac{(r_0^2 - r_0^2)}{8} \exp \left(-\frac{r_0^2}{4t_0} \right) \right] = \frac{(r_0^2 - r_0^2)}{8} \frac{d}{dt_0} \left[\frac{1}{t_0} \exp \left(-\frac{r_0^2}{4t_0} \right) \right]
$$

$$
 = \left(\frac{r_0^2 - r_0^2}{8} \right) \left[\exp \left(-\frac{r_0^2}{4t_0} \right) \frac{d}{dt_0} \left(\frac{1}{t_0} \right) + \frac{1}{t_0} \frac{d}{dt_0} \left[\exp \left(-\frac{r_0^2}{4t_0} \right) \right] \right]
$$

$$
 = \left(\frac{r_0^2 - r_0^2}{8} \right) \left[\frac{r_0^2}{4t_0} - 1 \right] \exp \left(-\frac{r_0^2}{4t_0} \right)
$$
Collecting the derivatives we have
\[
\frac{d}{dt_0} \left[\rho_0(\rho_0, t_0) \right] = \frac{1}{2t_0} \exp \left(\frac{-\rho_0^2}{4t_0} \right) - \frac{1}{2t_0} \exp \left(\frac{-\rho_0^2}{4t_0} \right)
+ \left(\frac{\rho_0^2 - \rho_0^2}{8t_0^2} \right) \left[\frac{\rho_0^2}{4t_0} - 1 \right] \exp \left(\frac{-\rho_0^2}{4t_0} \right)
\]

Multiplying through by \(t_0 \) yields the well testing derivative
\[
\rho_0'(\rho_0, t_0) = \frac{1}{2} \exp \left(\frac{-\rho_0^2}{4t_0} \right) - \frac{1}{2t_0} \exp \left(\frac{-\rho_0^2}{4t_0} \right) + \left(\frac{\rho_0^2 - \rho_0^2}{8t_0^2} \right) \left[\frac{\rho_0^2}{4t_0} - 1 \right] \exp \left(\frac{-\rho_0^2}{4t_0} \right) (55)
\]

Summary of Results:

<table>
<thead>
<tr>
<th>Case</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Infinite-acting reservoir</td>
<td>(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0))</td>
</tr>
<tr>
<td>Laplace Domain/Cylindrical Source Solution</td>
<td>(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0))</td>
</tr>
<tr>
<td>Laplace Domain/Line Source Solution</td>
<td>(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0))</td>
</tr>
<tr>
<td>Laplace Domain/"log" approximation</td>
<td>(\rho_0(\rho_0, \mu) = \frac{1}{2m} \ln \left(\frac{\sqrt{\mu} \rho_0}{\pi} \right))</td>
</tr>
<tr>
<td>Real Domain/Cylindrical Source Solution</td>
<td>(\rho_0(\rho_0, t_0) = \mathcal{L}^{-1} \left{ \frac{1}{m \sqrt{\mu} k_1(\mu \rho_0)} \right} = \text{not invertable})</td>
</tr>
<tr>
<td>Real Domain/Line Source Solution</td>
<td>(\rho_0(\rho_0, t_0) = \frac{1}{2} \exp \left(\frac{-\rho_0^2}{4t_0} \right))</td>
</tr>
<tr>
<td>Real Domain/Derivative of the Line Source Solution</td>
<td>(\rho_0'(\rho_0, t_0) = \frac{1}{2} \exp \left(\frac{-\rho_0^2}{4t_0} \right))</td>
</tr>
<tr>
<td>Real Domain/"log" approximation</td>
<td>(\rho_0(\rho_0, t_0) = \frac{1}{2} \ln \left(\frac{\sqrt{\mu} \rho_0}{\pi} \right))</td>
</tr>
<tr>
<td>Real Domain/Derivative of the "log" approximation</td>
<td>(\rho_0'(\rho_0, t_0) = \frac{1}{2})</td>
</tr>
</tbody>
</table>

b. Bounded circular reservoir/no-flow outer boundary

Laplace Domain/Cyl Source	\(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0) I_1(\sqrt{\mu} \rho_0) \left\{ \frac{k_1(\sqrt{\mu} \rho_0)}{\mu \sqrt{\mu} k_1(\mu \rho_0)} \right\} \)
Laplace Domain/Line Source	\(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0) + \frac{1}{m} k_1(\sqrt{\mu} \rho_0) I_0(\sqrt{\mu} \rho_0) \)
Laplace Domain/Line Source	\(\rho_0(\rho_0, \mu) = \frac{1}{m} k_0(\sqrt{\mu} \rho_0) + \frac{1}{m} k_1(\sqrt{\mu} \rho_0) I_0(\sqrt{\mu} \rho_0) \)
Case | Solution
--- | ---
b. bounded circular reservoir / no-flow boundary - continued
Real Domain / Line Source Soln. \(p(r, t) = \frac{1}{2} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{2} \left(\frac{r_e^2}{4t_0} \right) + \frac{z}{2} \frac{t_0}{t} \exp \left(\frac{-r_e^2}{4t_0} \right) \)
+ \(\frac{1}{2} \left(\frac{r_0^2 - r_e^2}{4t_0} \right) \exp \left(\frac{-r_e^2}{4t_0} \right) \)
Real Domain / Derivative of Line Source Soln. \(p^t(r, t) = \frac{1}{2} \frac{t_0}{t} \exp \left(\frac{-r_e^2}{4t_0} \right) + \frac{z}{2} \frac{t_0}{t} \exp \left(\frac{-r_e^2}{4t_0} \right) \)
+ \(\frac{1}{2} \frac{t_0}{t} \left(\frac{r_0^2 - r_e^2}{4} \right) \exp \left(\frac{-r_e^2}{4t_0} \right) \)
c. bounded circular reservoir / constant pressure boundary
Laplace Domain / Cyl. Source \(\Phi_d(r, \theta) = \frac{1}{\sqrt{4 \pi}} \frac{k_d}{k_e} \left(\frac{r_0^2}{4l_0} \right) - \frac{1}{\sqrt{4 \pi}} \frac{k_e}{k_d} \left(\frac{r_e^2}{4l_e} \right) - \frac{1}{\sqrt{4 \pi}} \frac{k_d}{k_e} \left(\frac{r_0^2}{4l_0} \right) \)
Laplace Domain / Line Source \(\Phi_d(r, \theta) = \frac{1}{\sqrt{4 \pi}} \frac{k_0}{k_e} \left(\frac{r_0^2}{4l_0} \right) - \frac{1}{\sqrt{4 \pi}} \frac{k_e}{k_0} \left(\frac{r_e^2}{4l_e} \right) \)
Real Domain / Line Source Soln. \(p_d(r, t) = \frac{1}{2} \frac{t_0}{t} \left(\frac{r_0^2}{4t_0} \right) - \frac{1}{2} \frac{t_0}{t} \left(\frac{r_e^2}{4t_0} \right) \)
+ \(\frac{1}{2} \frac{t_0}{t} \left(\frac{r_0^2 - r_e^2}{4t_0} \right) \exp \left(\frac{-r_e^2}{4t_0} \right) \)
Real Domain / Derivative of Line Source Soln. \(p^t_d(r, t) = \frac{1}{2} \frac{t_0}{t} \exp \left(\frac{-r_e^2}{4t_0} \right) + \frac{1}{2} \frac{t_0}{t} \exp \left(\frac{-r_e^2}{4t_0} \right) \)
+ \(\frac{1}{2} \frac{t_0}{t} \left(\frac{r_0^2 - r_e^2}{4t_0} \right) \exp \left(\frac{-r_e^2}{4t_0} \right) \)