Objectives: (things you should know and/or be able to do)

Laplace Domain Solutions:

- Be able to derive the particular solutions (in Laplace domain) for a well produced at a constant flowrate in a homogeneous reservoir for the following initial condition—subject to the following inner and outer boundary conditions:

 Initial Condition (Uniform Pressure Distribution)

 \[p_D(r_D, t_D \leq 0) = 0 \]

 Inner Boundary Condition (Constant Flowrate at the Well)

 \[r_D \frac{\partial p_D}{\partial r_D} \bigg|_{r_D = 1} = -1 \]

 Outer Boundary Conditions

 a. "Infinite-Acting" Reservoir

 \[p_D(r_D \rightarrow \infty, t_D) = 0 \] (No reservoir boundary)

 b. "Prescribed Flux" at the Boundary

 \[r_D \frac{\partial p_D}{\partial r_D} \bigg|_{r_D = r_{eD}} = q_{Dext}(t_D) \] (Specified flux across the reservoir boundary)

 c. Constant Pressure Boundary

 \[p_D(r_{eD}, t_D) = 0 \] (Constant pressure at the reservoir boundary)
Objectives: (things you should know and/or be able to do)

- **Particular Solutions in the Laplace Domain**
 - "Infinite-acting" reservoir behavior: "cylindrical source" solution
 \[
 \bar{p}_D(r_D,u) = \frac{1}{u} \frac{K_0(\sqrt{u}r_D)}{\sqrt{u} K_1(\sqrt{u})}
 \]
 - "Infinite-acting" reservoir behavior: "line source" solution
 \[
 \bar{p}_D(r_D,u) = \frac{1}{u} K_0(\sqrt{u}r_D) \quad \text{(where } \sqrt{u} K_1(\sqrt{u}) \to 1; \text{ for } \sqrt{u} \to 0)\]
 - "Infinite-acting" reservoir behavior: "log approximation" solution
 \[
 \bar{p}_D(r_D,u) \approx \frac{1}{u} K_0(\sqrt{u}r_D) = \frac{1}{2u} \ln \left[\frac{4}{e^{2\gamma} r_D^2} \right] \quad (\gamma = 0.577216 \ldots \text{ Euler's Constant})
 \]

- **Particular Solutions in the Laplace Domain**: (Continued)
 - Bounded circular res. — "no-flow" at the outer boundary \((i.e., \ q_{D\text{ext}}(t_D)=0)\)
 \[
 \bar{p}_D(r_D,u) = \frac{1}{u} \frac{K_0(\sqrt{u}r_D) I_1(\sqrt{u}r_D) + K_1(\sqrt{u}r_D) I_0(\sqrt{u}r_D)}{\sqrt{u} K_1(\sqrt{u}) I_1(\sqrt{u}r_D) - \sqrt{u} I_1(\sqrt{u}) K_1(\sqrt{u}r_D)}
 \]
 - Bounded circular reservoir — "constant pressure" at the outer boundary
 \[
 \bar{p}_D (r_D,u) = \frac{1}{u} \frac{K_0(\sqrt{u}r_D) I_0(\sqrt{u}r_D) - K_0(\sqrt{u}r_D) I_0(\sqrt{u}r_D)}{\sqrt{u} K_1(\sqrt{u}) I_0(\sqrt{u}r_D) + \sqrt{u} I_1(\sqrt{u}) K_0(\sqrt{u}r_D)}
 \]
Solution of the Radial Flow Diffusivity Equation in Terms of the Laplace Transform

from Department of Petroleum Engineering Course Notes (1994)
Solution for Radial Flow in a Homogeneous Reservoir: Infinite-Radius, No-Flow, and Constant Pressure Outer Boundaries - Laplace Transform Approach

The fundamental partial differential equation (the diffusion equation) is given in dimensionless form by:

\[
\frac{\partial \phi}{\partial \tau} + \frac{1}{\sqrt{\pi \beta}} \frac{\partial \phi}{\partial \rho} = \frac{\partial \phi}{\partial \rho} \tag{1}
\]

or

\[
\frac{1}{\beta} \frac{\partial}{\partial \rho} \left[\phi \frac{\partial \phi}{\partial \rho} \right] = \frac{\partial \phi}{\partial \rho} \tag{2}
\]

where

\[
\phi = \frac{r}{k} \quad \beta = \frac{r}{k} \quad \rho = \frac{r}{k} \quad \frac{\partial \phi}{\partial \rho} = \frac{t}{\mu} \tag{4}
\]

and \(\frac{\partial \phi}{\partial \rho} \) are given by

<table>
<thead>
<tr>
<th>Darcy Units</th>
<th>Field Units</th>
<th>ST Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{t}{\mu})</td>
<td>2.35710^-8</td>
<td>5.17810^-8</td>
</tr>
<tr>
<td>(\frac{t}{\mu})</td>
<td>2.35710^-8</td>
<td>5.17810^-8</td>
</tr>
<tr>
<td>(\frac{t}{\mu})</td>
<td>2.35710^-8</td>
<td>5.17810^-8</td>
</tr>
</tbody>
</table>

The initial condition is given as

\[
\phi(\rho, \tau = 0) = 0 \quad \text{(uniform pressure distribution)} \tag{5}
\]

The constant rate inner boundary condition is

\[
\frac{\partial \phi}{\partial \rho} \bigg|_{\rho = \rho_0} = 1 \quad \text{(constant flow rate at the well)} \tag{6}
\]

The outer boundary conditions are given by:

a. "Infinite-acting" outer boundary condition

\[
\phi(\rho = \infty, \tau) = 0 \tag{7}
\]

b. "No-flow" outer boundary condition

\[
\frac{\partial \phi}{\partial \rho} \bigg|_{\rho = \rho_0} = 0 \tag{8}
\]

c. "Constant pressure" outer boundary condition

\[
\phi(\rho_0, \tau) = \phi_{\text{ext}}(\tau) = 0 \quad \text{(constant at initial pressure)} \tag{9}
\]

d. "Specified flux" outer boundary condition

\[
\frac{\partial \phi}{\partial \rho} \bigg|_{\rho = \rho_0} = \phi_{\text{ext}}(\tau) \tag{10}
\]

Laplace Transform Formulation:

\[
\phi_\beta(\rho, \beta) = \mathcal{L}\{\phi(\rho, \tau)\}, \mu = \text{laplace transform parameter}
\]

Taking the laplace transform of eq. 2 gives

\[
\frac{1}{\beta} \frac{d}{d\beta} \left[\phi_{\beta} \right] = \mu \phi_{\beta} \tag{12}
\]

We recognize from Eq. 6 that \(\phi(\rho, \tau = 0) = 0 \), combining Eqs. 6 and 12 we obtain

\[
\frac{1}{\beta} \frac{d}{d\beta} \left[\phi_{\beta} \right] = \mu \phi_{\beta} \tag{13}
\]

Taking the Laplace transform of the inner boundary condition gives

\[
\left[\frac{\partial \phi_{\beta}}{\partial \beta} \right]_{\beta = 0} = -1 \tag{14}
\]

Taking the laplace transform of the outer boundary conditions:

a. Laplace transform of the "infinite-acting" outer boundary condition

\[
\phi_{\beta}(\beta = \infty, \mu) = 0 \tag{15}
\]

b. Laplace transform of the "no-flow" outer boundary condition

\[
\left[\frac{\partial \phi_{\beta}}{\partial \beta} \right]_{\beta = \rho_0} = 0 \tag{16}
\]

c. Laplace transform of the "constant pressure" outer boundary condition

\[
\lim_{\beta \to \infty} \phi_{\beta}(\rho_0, \mu) = \phi_{\text{ext}}(\tau) = 0 \quad \text{(constant at initial pressure)} \tag{17}
\]

d. Laplace transform of the "specified flux" outer boundary condition

\[
\left[\frac{\partial \phi_{\beta}}{\partial \beta} \right]_{\beta = \rho_0} = \phi_{\text{ext}}(\tau) \tag{18}
\]

Multiplying through Eq. 18 by \(\rho_0 \), we have

\[
\frac{\rho_0}{\partial \beta} \left[\phi_{\beta} \right] = \mu \phi_{\beta} \tag{19}
\]

Defining a variable of substitution, \(\tau = \sqrt{\rho_0 \beta} \)

or

\[
\phi_{\beta} \bigg|_{\beta = \rho_0} = \frac{\rho_0}{\sqrt{\beta}} \tag{20}
\]

Applying the chain rule on the \(d/d\beta \) terms in Eq. 19 we obtain

\[
\frac{\rho_0}{\partial \beta} \left[\phi_{\beta} \right] = \mu \phi_{\beta} \tag{21}
\]

where

\[
\frac{\rho_0}{\partial \beta} \left[\phi_{\beta} \right] = \sqrt{\rho_0} \tag{22}
\]

Substituting Eqs. 21 and 22 into Eq. 22 we have

\[
\frac{\rho_0}{\partial \beta} \left[\phi_{\beta} \right] = \sqrt{\rho_0} \tag{23}
\]
Cancelling the \(\sqrt{r} \) terms on the left-hand-side we obtain
\[
\frac{d}{dr} \left[\frac{1}{r} \frac{dw}{dr} \right] = \frac{2}{r} S_0 \tag{24}
\]
Expanding the left-hand-side terms we have
\[
\frac{d^2 w}{dr^2} + \frac{1}{r} \frac{dw}{dr} = \frac{2}{r} S_0 \tag{25}
\]
From Abramowitz and Stegun, Handbook of Mathematical Functions, (p. 354, Eq. 9.6.1), the modified Bessel differential equation is given by
\[
\frac{d^2 w}{dx^2} + \frac{1}{x} \frac{dw}{dx} = \frac{2}{x} v^2 w \tag{26}
\]
The general solution of Eq. 26 is given by
\[
w = A I_0(x) + B K_0(x) \tag{27}
\]
where the functions \(I_0(x) \) and \(K_0(x) \) are the modified Bessel functions of the first and second kinds, respectively. By inspection, our general solution is
\[
b_0(r) = A I_0(\sqrt{r}) + B K_0(\sqrt{r}) \tag{28}
\]
or, substituting \(\sqrt{r} = \sqrt{r_0} \) (Eq. 20) into Eq. 28 we have
\[
b_0(r_0, w) = A I_0(\sqrt{r_0}) + B K_0(\sqrt{r_0}) \tag{29}
\]
In order to develop our particular solutions (i.e. to solve for the \(A \) and \(B \) parameters for each set of boundary conditions), we require the \(\frac{db_0}{dr_0} \) term. Using the chain rule we obtain
\[
\frac{db_0}{dr_0} = \frac{db_0}{dr} \frac{dr}{dr_0} \tag{30}
\]
Substituting Eq. 22 into Eq. 30
\[
\frac{db_0}{dr} = \sqrt{r} \frac{dw}{dr} \tag{31}
\]
and the \(\frac{db_0}{dr} \) term is given by
\[
\frac{db_0}{dr} = A I_1(\sqrt{r}) + B K_1(\sqrt{r}) \tag{32}
\]
From Abramowitz and Stegun, Handbook of Mathematical Functions, we have
\[
\frac{db_0}{dr} = I_1(\sqrt{r}) \tag{33}
\]
\[
\frac{db_0}{dr} = -K_1(\sqrt{r}) \tag{34}
\]
Substituting Eqs. 33 and 34 into Eq. 32 we have
\[
\frac{db_0}{dr} = A I_1(\sqrt{r}) - B K_1(\sqrt{r}) \tag{35}
\]
Combining Eqs. 30 and 35, and substituting \(\sqrt{r} = \sqrt{r_0} \) (Eq. 22) into Eq. 35 we obtain
\[
\frac{db_0}{dr} = A I_1(\sqrt{r_0}) - B K_1(\sqrt{r_0}) \tag{36}
\]
Multiplying through by \(r_0 \) gives
\[
[r_0 \frac{db_0}{dr}] = A I_1(\sqrt{r_0}) r_0 - B K_1(\sqrt{r_0}) r_0 \tag{37}
\]
Summarizing our efforts so far:

General Solution in Laplace Domain
\[
b_0(\nu, \omega) = A I_0(\sqrt{\nu r_0}) + B K_0(\sqrt{\nu r_0}) \tag{38}
\]
Radial Derivative of the General Solution in Laplace Domain
\[
[\nu \frac{db_0}{d\nu}] = A I_1(\sqrt{\nu r_0}) - B K_1(\sqrt{\nu r_0}) \tag{39}
\]
Laplace transform of boundary conditions

- **Inner boundary condition**
 \[
 \left[\frac{db_0}{dr} \right]_{r=r_0} = \frac{0}{1} \quad \text{(constant rate at well)} \tag{40}
 \]
- **Outer boundary conditions**
 a. **Infinite-acting** reservoir
 \[
 b_0(r_0, \omega) = 0 \tag{41}
 \]
 b. **No-flow** outer boundary condition
 \[
 \left[\frac{db_0}{dr} \right]_{r=r_0} = 0 \tag{42}
 \]
 c. **Constant pressure** outer boundary condition
 \[
 \left[\frac{db_0}{dr} \right]_{r=r_0} = -0 \tag{43}
 \]
 d. **Prescribed flux** outer boundary condition
 \[
 \left[\frac{db_0}{dr} \right]_{r=r_0} = \frac{\omega}{2} \tag{44}
 \]

Our goal is to use the boundary conditions to determine the \(A \) and \(B \) parameters. Our first step is to use the constant rate inner boundary condition (Eq. 41) as a starting point then combine this condition with each outer boundary.
condition in order to determine A and B for each case.

Starting with the inner boundary condition (Eq. 14) and the derivative of the general solution (Eq. 37) we have

$$A\sqrt{\alpha} I_0(\alpha r) - B\sqrt{\alpha} I_1(\alpha r) = \frac{-1}{\mu}$$

or

$$A\sqrt{\alpha} I_0(\alpha r) - B\sqrt{\alpha} I_1(\alpha r) = \frac{-1}{\mu}$$

(Eq. 38)

Outer Boundary Case 1: Infinite-acting reservoir

Combining Eqs. 29 and 15 we have

$$\lim_{r \to \infty} \left[A I_0(\alpha r) + B I_1(\alpha r) \right] = 0$$

(Eq. 39)

Given that we are taking the limit as $r \to \infty$, we must establish the behavior of $I_0(x)$ and $I_1(x)$. Considering the behavior of $I_0(x)$ and $I_1(x)$ we have

$$I_0(x) \to 0$$

$$I_1(x) \to 0$$

and

$$\lim_{x \to 0} I_0(x) = 0$$

$$\lim_{x \to 0} I_1(x) = 0$$

Since $I_0(x) \to 0$ and $I_1(x) \to 0$, then $A(0) + B(0) = 0$; therefore $A(0) = 0$ in order for the solution to be bounded. Setting $A = 0$ we solve Eq. 38 for B, which gives

$$B = \frac{1}{\mu}$$

(Eq. 40)

and of course

$$A = 0$$

Substituting Eqs. 40 and 41 into the general solution (Eq. 29) we obtain the particular solution for the infinite-acting reservoir case. This result is

$$I_0(r, \mu) = \frac{1}{\mu} \frac{k_0(\mu r^2)}{\sqrt{\pi k(\mu)}}$$

(Eq. 42)

Eq. 42 is called the cylindrical source solution.

Unfortunately, Eq. 42 is not readily invertible; therefore we will attempt to reduce Eq. 42 into a more usable form. From Abramowitz and Stegun, Handbook of Mathematical Functions, p. 375, Eq. 9.6.19 (for $n=1$) we have

$$k_1(x) = \frac{1}{x}$$

(Eq. 43)

or, multiplying through by x we have

$$x k_1(x) = 1$$

(Eq. 44)

for our case we have

$$\sqrt{\alpha} k_0(\alpha r) = 1$$

(Eq. 45)

or

$$x k_0(x) = 1$$

(Eq. 46)

Combining this result with Eq. 42 we obtain

$$I_0(r, \mu) = \frac{1}{\mu} k_0(\mu r^2)$$

(Eq. 47)

Eq. 47 is called the line source solution and can be inverted directly.

Eq. 47 can be reduced further to yield a logarithmic relation that is commonly referred to as the "log approximation." In order to develop this result we require an approximation for $k_0(x)$ as $x \to 0$. From Abramowitz and Stegun, Handbook of Mathematical Functions, Eq. 9.6.13, p. 375, we have

$$k_0(x) \approx -\ln x + \frac{1}{2} \frac{1}{x} + \frac{1}{4} \frac{1}{x^2} + \frac{1}{4} \frac{1}{x^3} + \frac{1}{4} \frac{1}{x^4} + \cdots$$

where we note that as $x \to 0$, then $x^2 \to 0$, which reduces to

$$k_0(x) \approx -\ln x$$

(Eq. 48)

or multiplying and dividing by z we have

$$k_0(x) \approx \frac{1}{z} \ln \left(\frac{z}{e^{z/2}}\right)$$

(Eq. 49)

The behavior of $I_0(x)$ in the vicinity of $x \to 0$ is obtained using the series representation provided in Abramowitz and Stegun, Handbook of Mathematical Functions, Eq. 9.6.12, p. 375. This expression is

$$I_0(x) \approx 1 + \frac{1}{2} \frac{1}{x} \left[1 + \frac{1}{4} \frac{1}{x^2} + \frac{1}{4} \frac{1}{x^3} + \frac{1}{4} \frac{1}{x^4} + \cdots \right]$$

where as $x \to 0$ we have

$$I_0(x) \approx 1$$

(Eq. 50)
Combining Eqs. 44 and 45:

\[
\kappa_0(x) = \frac{1}{2} \ln \left(\frac{4 \mu}{\kappa_0(\mu)} \right) \quad \text{as } x \to 0
\]

(46)

Substituting Eq. 46 into Eq. 43 we obtain:

\[
\frac{\delta_0(\mu, \tau)}{2\mu} = \frac{1}{2} \ln \left(\frac{4 \mu}{\kappa_0(\mu)} \right) \quad \text{as } \mu \to 0
\]

(47)

or in a form more amenable to inversion we have:

\[
\frac{\delta_0(\mu, \tau)}{2\mu} = -\frac{1}{2} \ln(\mu) + \frac{1}{2} \ln \left(\frac{4 \mu}{\kappa_0(\mu)} \right)
\]

(48)

Outer Boundary Case 2: No-Flow outer boundary

Combining Eqs. 37 and 16 we obtain:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) + \frac{8}{9} \frac{\kappa_2(\sqrt{\mu} r_0)}{\kappa_0(\sqrt{\mu} r_0)} = 0
\]

(49)

Solving for the B parameter we obtain:

\[
B = \frac{A}{\kappa_0(\sqrt{\mu} r_0)}
\]

(50)

Recalling the inner boundary condition, Eq. 38, we have:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) - B \kappa_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(51)

Combining Eqs. 50 and 38 we obtain:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) - \sqrt{\mu} \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(52)

or:

\[
A \left[I_0(\sqrt{\mu} r_0) \kappa_0(\sqrt{\mu} r_0) - \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0) \right] = -\frac{1}{\mu}
\]

(53)

Solving for A we have:

\[
A = \frac{\kappa_0(\sqrt{\mu} r_0)}{\sqrt{\mu} \kappa_0(\sqrt{\mu} r_0) - \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0)}
\]

(54)

Recalling the inner boundary condition, Eq. 38, gives us:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) - B \kappa_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(55)

Combining Eqs. 49 and 17 we have:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) + 8 \kappa_2(\sqrt{\mu} r_0) = 0
\]

(56)

Solving for the B parameter we obtain:

\[
B = \frac{A}{\kappa_0(\sqrt{\mu} r_0)}
\]

(57)

Outer Boundary Case 3: Constant pressure outer boundary

Combining Eqs. 54 and 17 we have:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) + 8 \kappa_2(\sqrt{\mu} r_0) = 0
\]

(58)

Solving for the B parameter we obtain:

\[
B = -\frac{A \sqrt{\mu} I_0(\sqrt{\mu} r_0)}{\kappa_0(\sqrt{\mu} r_0)}
\]

(59)

Recalling the inner boundary condition, Eq. 38, gives us:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) - B \kappa_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(60)

Substituting Eq. 56 into Eq. 38 we have:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) + A \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(61)

or:

\[
A \left[I_0(\sqrt{\mu} r_0) \kappa_0(\sqrt{\mu} r_0) + \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0) \right] = -\frac{1}{\mu}
\]

(62)

Solving for A we have:

\[
A = \frac{-\kappa_0(\sqrt{\mu} r_0)}{\sqrt{\mu} \kappa_0(\sqrt{\mu} r_0) + \kappa_0(\sqrt{\mu} r_0) I_0(\sqrt{\mu} r_0)}
\]

(63)

Recalling the inner boundary condition, Eq. 38, gives us:

\[
A \sqrt{\mu} I_0(\sqrt{\mu} r_0) - B \kappa_0(\sqrt{\mu} r_0) = -\frac{1}{\mu}
\]

(64)

Substituting Eq. 57 into Eq. 38 gives:

\[
B = \frac{I_0(\sqrt{\mu} r_0)}{\kappa_0(\sqrt{\mu} r_0)}
\]

(65)
Substituting Eqs. 57 and 58 into the general solution, Eq. 29, we obtain
\[
\rho_f(r, \mu) = \frac{k_0(u_0) I_0(u_0 \mu) - k_0(u_0 \mu) I_0(u_0)}{m \left[u_0 k_0(u_0) I_0(u_0) + \sqrt{u_0} I_0(u_0) \right]},
\]
(59)

As in the previous cases, we want to consider the behavior as \(\mu \to 0 \) (large \(\rho \)). As before, we have
\[
\frac{I_0(\mu)}{\mu} = 1 \quad \text{as} \quad \mu \to 0,
\]
\[
\frac{I_1(\mu)}{\mu} = 0 \quad \text{as} \quad \mu \to 0.
\]
Combining these relations with Eq. 59, we obtain
\[
\rho_f(r, \mu) = \frac{1}{m} k_0(u_0) I_0(u_0 \mu)\quad \text{as} \quad \mu \to 0.
\]
(60)

Outer Boundary Case 4: Prescribed flux outer boundary

Combining Eqs. 57 and 18 we obtain
\[
\frac{\rho_f}{u_0} I_0(u_0 \mu) - \frac{\rho_f}{u_0} k_0(u_0 \mu) = \rho_{\text{ext}}.
\]
Recalling the inner boundary condition, Eq. 58, we have
\[
\frac{A}{\mu} I_0(u_0 \mu) - B \frac{A}{\mu} k_0(u_0 \mu) = -1.
\]
We will solve Eqs. 61 and 58 simultaneously to determine \(A \) and \(B \). The algebra becomes a bit tedious, but we will show all steps. Solving for the \(A \) parameter we divide through Eq. 61 by \(\frac{u_0}{\mu} k_0(u_0 \mu) \), then we divide through Eq. 58 by \(\frac{u_0}{\mu} k_0(u_0 \mu) \). These operations give
\[
\frac{A}{\mu} \frac{u_0}{\mu} k_0(u_0 \mu) - B = \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)}.
\]
\[
A \frac{u_0}{\mu} I_0(u_0 \mu) - B = -1.
\]
(62)

Subtracting Eq. 63 from Eq. 62 we have
\[
A \left[\frac{u_0}{\mu} I_0(u_0 \mu) - \frac{u_0}{\mu} I_0(u_0 \mu) \right] + B \frac{u_0}{\mu} k_0(u_0 \mu) = \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)} - 1
\]
Expanding to yield a uniform denominator on both sides gives
\[
B = \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} I_0(u_0 \mu)} + \frac{1}{\mu} \frac{u_0}{\mu} k_0(u_0 \mu),
\]
(64)

Subtracting Eq. 64 from Eq. 65 we have
\[
A \left[\frac{u_0}{\mu} I_0(u_0 \mu) - \frac{u_0}{\mu} I_0(u_0 \mu) \right] = \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)} + \frac{1}{\mu} \frac{u_0}{\mu} k_0(u_0 \mu),
\]
Expanding to yield a uniform denominator on both sides gives
\[
A \left[\frac{u_0}{\mu} I_0(u_0 \mu) - \frac{u_0}{\mu} I_0(u_0 \mu) \right] = \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)} + \frac{1}{\mu} \frac{u_0}{\mu} k_0(u_0 \mu)
\]
Solving for \(A \) we have
\[
A = \frac{1}{\mu} \frac{u_0}{\mu} I_0(u_0 \mu) + \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)}.
\]
(65)

Comparing Eq. 67 with the result for the no-flow boundary case we recall Eq. 52
\[
B = \frac{1}{\mu} \frac{u_0}{\mu} I_0(u_0 \mu) - \frac{\rho_{\text{ext}}}{\frac{u_0}{\mu} k_0(u_0 \mu)}
\]
(66)
where we find that Eq. 67 is identical to Eq. 52 for \(q_{\text{ext}} = 0 \). Having shown this for both \(A \) and \(B \) we have verified these results.

In order to determine the particular solution for this case, we substitute Eqs. 64 and 67 into the general solution (Eq. 27). This gives

\[
\frac{q_0}{\rho_0} = \frac{1}{m} \frac{k_0 (\sigma_k R_0) S_i (\sigma_k R_0) + S_0 (\sigma_k R_0) k_1 (\sigma_k R_0)}{\sqrt{2} k_1 (\sigma_k R_0) S_i (\sigma_k R_0) - \sqrt{2} S_1 (\sigma_k R_0) k_1 (\sigma_k R_0)}
\]

\[
+ \frac{1}{m} \frac{\tilde{q}_{\text{ext}} (\sigma_k R_0)}{\sqrt{2} \rho_0} \frac{k_0 (\sigma_k R_0) \sqrt{2} S_1 (\sigma_k R_0) + S_0 (\sigma_k R_0) \sqrt{2} k_1 (\sigma_k R_0)}{\sqrt{2} k_1 (\sigma_k R_0) S_i (\sigma_k R_0) - \sqrt{2} S_1 (\sigma_k R_0) k_1 (\sigma_k R_0)}
\]

(48)

where the first part of Eq. 68 is exactly Eq. 55, the solution for the no-flow boundary case (i.e., \(\tilde{q}_{\text{ext}} = 0 \)). Note that \(\tilde{q}_{\text{ext}} = \frac{1}{2} (\tilde{q}_{\text{ext}} (\sigma_k R_0)) \).

As with the previous cases we can consider the behavior of Eq. 68 as \(\mu \to 0 \). As we saw before:

\[
\sqrt{2} k_1 (\sigma_k R_0) = 1 \quad \text{as} \quad \mu \to 0
\]

\[
\sqrt{2} S_1 (\sigma_k R_0) = 0 \quad \text{as} \quad \mu \to 0
\]

Combining these relations with Eq. 68 gives

\[
\frac{q_0}{\rho_0} = \frac{1}{m} \frac{k_0 (\sigma_k R_0)}{S_i (\sigma_k R_0)} + \frac{1}{m} \frac{S_0 (\sigma_k R_0)}{S_i (\sigma_k R_0) k_1 (\sigma_k R_0)}
\]

\[
+ \frac{1}{m} \frac{\tilde{q}_{\text{ext}} (\sigma_k R_0)}{\sqrt{2} \rho_0} \frac{k_0 (\sigma_k R_0) \sqrt{2} S_1 (\sigma_k R_0) + S_0 (\sigma_k R_0) \sqrt{2} k_1 (\sigma_k R_0)}{\sqrt{2} k_1 (\sigma_k R_0) S_i (\sigma_k R_0) - \sqrt{2} S_1 (\sigma_k R_0) k_1 (\sigma_k R_0)}
\]

(49)

The second term in Eq. 68 (or 69) should not be arbitrarily reduced without a comprehensive study of the interplay of individual terms. For example, reduction using the behavior of \(S_1 (\sigma_k R_0) \) and \(k_1 (\sigma_k R_0) \) as \(x \to 0 \) yields \(S_i (\sigma_k R_0) / S_0 (\sigma_k R_0) \) which tends to \(1 / 0 = \infty \) as \(\mu \to 0 \). Considerable care must be exercised when making such reductions.
Log-log Plot: Constant Well Rate Solutions for a Bounded Circular Reservoir: Laplace Transform Solutions—Radial Flow Case (SPE 25479)

Legend: Error Analysis for the Laplace Transform Solution Approximations:
- "Cylindrical Source" Formulation
- "Line Source" Formulation
- First Approximate Solution is an Expansion of the "Line Source" Form
- Second Approximation is a Truncated Form of the First Approximation

No Flow Outer Boundary Cases

Constant Pressure Outer Boundary Cases Shown as Straight Lines where during Steady-State: $p_D(u) = \ln(r_{eD})/u$

Transient Radial Flow

Dimensionless Laplace Transform Parameter, u

(\leftarrow Time is increasing to the left in this rendering)