Conventional Versus Unconventional:

Conventional Reservoirs
- Localized structural trap
- External HC sourcing
- Hydrodynamic influence
- Porosity important
- Permeability > 0.1 md
- Permeability \(\neq f(p) \)
- Traditional phase behavior (PVT)
- Minimal extraction effort
- Significant production history
- Often late development life-cycle
- Few wells for commerciality
- Base reserves on volumetrics
- Assess entire prospect before drilling
- Boundary-dominated flow (months)

Unconventional Reservoirs (Shale)
- "Continuous-type" deposit
- Self-sourced HC
- Minimal hydrodynamic influence
- Porosity may not be important
- Permeability \(<< 0.1 \) md
- Permeability \(= f(p) \)
- Complex (HP/HT) PVT
- Significant extraction effort
- Limited production history
- Early development life-cycle
- Many wells for commerciality
- Base reserves on analogs
- Prospect driven by drilling
- No boundary-dominated flow

- Traditional reserves methods
- Traditional reserves methods
Reservoir Engineering Aspects of Unconventional Reservoirs — A Brief Introduction

Reservoir Engineering Aspects of Unconventional Reservoirs — A Brief Introduction

Slide 3

Schematic Production Performance Plot

- Estimated Ultimate Recovery (EUR) [The area under the hybrid (hyperbolic-exponential) rate curves]
- "Switch Point" from Hyperbolic to Exponential

Flow Regimes — Multi-Fracture Horizontal Well

- 1:2 Slope (high $F_{c,1}$)
- 1:4 Slope (low $F_{c,4}$)
- Formation Linear Flow Regime
- Compound Linear Flow Regime
- Elliptical Flow Regime
- Transition Regime
- Bilinear Flow Regime
- Transition Regime

Modern Decline Analysis — Power-Law Exponential Rate

- PLE Rate Relation:
 \[q(t) = q_i \exp[-D_{c}t - \hat{D}_{c}t^{n}] \]
- Decline Function: $D(t)$
 \[D(t) = \frac{1}{q} \frac{dq}{dt} \]
 \[\approx D_{\infty} + n\hat{D}_{c}t^{(1-n)} \]
- Hyperbolic Function: $b(t)$
 \[b(t) = \frac{d}{dt} \left[\frac{1}{D(t)} \right] \]
 \[\approx \frac{n\hat{D}_{c}(1-n)}{[n\hat{D}_{c} + D_{\infty}t^{(1-n)}]^2} t^{-n} \]

Schematic — Multi-Fracture Horizontal Well

- "Plug and Perf" System: Each STAGE has a certain number of perforation "clusters" (typically 4)
- "FracPoint" (and other such) Systems: Each STAGE is isolated and stimulated

TD Panel • So We Frac'd the Well, Now What? • Tom Blasingame (Texas A&M U.)

(Reservoir Engineering Aspects of Unconventionals) | PETE 631 - Petroleum Reservoir Description
PVT: (Issues/Challenges/Solutions?)
- Undersaturated oil, p_b suppression (nano-pore volumes/distributions).
- Volatile oil/critical fluid, nano-volume effects less an issue (IFT/p_c).
- Gas condensates — composition issues/ variations in p_{Crit} and T_{Crit}.
- Need molecular dynamics work to resolve/validate PVT in nano-pores.

Critical Temperature as a Function of Pore Size

a. Critical point suppression due to pore size (various gases).

b. Phase diagrams of confined and unconfined heavy gas condensate mixture (Pedersen et al, 1989). (vertical red) line is the reservoir temperature.

b. The percentage of liquid drop out (% by volume) of a heavy gas condensate mixture (Pedersen et al, 1989) at 400°F. (400°F is reservoir temperature — see plot at left).
Modeling Approach for a Horizontal Multi-Fracture Well

Modeling: (Grand Challenges)
- Fully integrated (not coupled) geomechanical/flow simulation model.
- Models may not be properly "parameterized" — no data to validate.
- Statistical versus deterministic models (system is "too complex")?
- Use models to establish/validate/bound drainage volumes.
- Use models to constrain assumptions about geomechanics/fluid flow.

b. Pressure gradient after 8 months (top) and 10 years (bottom) of production (Note times for different regimes, this is a relatively high permeability shale analog case).

b. Typical transient response where PSS is seen in the SRV (Note times for different regimes, this is a relatively high permeability shale analog case).
a. Time match of oil (green) and gas (red) rate performance. Note that the match substantially degrades after the shut-in (reservoir effect?).

b. Time match of (calculated) bottomhole pressures.

c. Cumulative oil match of oil rate using 80- and 800-acre spacings.

d. Plot of EUR versus well spacing (drainage area) for example case.

Comment:

- Left plot yields time required to estimate EUR (~12-32 months).
- The "hyperbolic" (or "constant b") flow regime is required to estimate EUR.

(all data obtained from publicly available sources — Dry Horizontal Shale Gas Wells ONLY)

[all data obtained from publicly available sources — Dry Horizontal Shale Gas Wells ONLY]
[P90/P50/P10 EUR Comparisons (Modified Hyperbolic Model with 30 year max life)]

Comment:
- Results vary when segregated by geological area, completions, spacing, etc.
- Analyses represent an attempt to quantify the RANGE of values.
What Keeps Us (Reservoir Engineers) Up at Night:

● Stimulation/Fracture Geometry:
 ■ Well spacing, reservoir model type (dual vs. single porosity), etc.?
 ■ Does the SRV change with time (specifically, does it shrink)?

● Reservoir Model:
 ■ Validity of dual ϕ/k models, enhanced k pods, fracture networks?
 ■ Model selection has a significant impact on POTENTIAL well spacing.
 ■ Can we predict/incorporate influence of natural fractures?
 ■ Is effort on geomechanics (really) going to lead to better understanding?

● Data Collection:
 ■ Taking data to validate model, or using model to guide development?
 ■ Downhole data — expensive — but are there any viable alternatives?
 ■ Poor data \rightarrow poor engineering and poor modeling.
 ■ Petrophysical data (ϕ, k, p_c) — scale, validity, integration?
 ■ Role of "distributed" data? (temperature, pressure, rates, etc.)

● Process:
 ■ No "cowboy-ing" the choke — develop a choke plan and stick to it!
 ■ Incorporating artificial lift from inception! (including modeling)
 ■ Use modeling to interpret performance and constrain parameters.
 ■ Focus on what we can measure; use that as a basis for modeling.
 ■ Start to consider statistics in addition to mechanistics.