2. (30 pts) Specialized Analysis of Wellbore Storage Distorted Data

These data are taken from Example 2.2 in the Lee text, *Well Testing*. These data were obtained from a "pressure buildup" test following a constant rate "drawdown" sequence performed on an oil well. Wellbore storage and skin effects are exhibited in these data.

Reservoir properties:
\[\phi = 0.039 \quad r_w = 0.198 \text{ ft} \quad c_t = 17 \times 10^{-6} \text{ psia}^{-1} \quad h = 69 \text{ ft} \]

Oil properties:
\[B_o = 1.136 \text{ RB/STB} \quad \mu_o = 0.8 \text{ cp} \]

Production parameters:
\[p_{wf}(\text{at } \Delta t=0) = 3534 \text{ psia} \quad q_o = 250 \text{ STB/D} \quad t_p = 13,630 \text{ hr} \]

Test Data and Data Functions: (m_{wbs} = 975 psi/hr)

<table>
<thead>
<tr>
<th>(\Delta t, \text{ hr})</th>
<th>(p_{w, \text{psia}})</th>
<th>(\Delta p_w, \text{ psi})</th>
<th>(\Delta p_w', \text{ psi})</th>
<th>(dp_w/d\Delta t, \text{ psi/hr})</th>
<th>(\Delta t_c, \text{ psi})</th>
<th>(\Delta p_s, \text{ psi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>3680</td>
<td>146</td>
<td>149.471</td>
<td>996.471</td>
<td>-0.012</td>
<td>-6629.976</td>
</tr>
<tr>
<td>0.2</td>
<td>3723</td>
<td>189</td>
<td>166.253</td>
<td>831.263</td>
<td>0.042</td>
<td>1282.025</td>
</tr>
<tr>
<td>0.3</td>
<td>3800</td>
<td>266</td>
<td>213.020</td>
<td>710.066</td>
<td>0.100</td>
<td>978.924</td>
</tr>
<tr>
<td>0.4</td>
<td>3866</td>
<td>332</td>
<td>236.405</td>
<td>591.012</td>
<td>0.151</td>
<td>842.994</td>
</tr>
<tr>
<td>0.5</td>
<td>3920</td>
<td>386</td>
<td>247.260</td>
<td>494.520</td>
<td>0.211</td>
<td>783.280</td>
</tr>
<tr>
<td>1</td>
<td>4103</td>
<td>569</td>
<td>238.045</td>
<td>238.045</td>
<td>0.551</td>
<td>752.793</td>
</tr>
<tr>
<td>2</td>
<td>4250</td>
<td>716</td>
<td>156.532</td>
<td>78.266</td>
<td>1.376</td>
<td>778.492</td>
</tr>
<tr>
<td>4</td>
<td>4320</td>
<td>786</td>
<td>68.393</td>
<td>17.098</td>
<td>3.251</td>
<td>800.030</td>
</tr>
<tr>
<td>6</td>
<td>4340</td>
<td>806</td>
<td>40.806</td>
<td>6.801</td>
<td>5.210</td>
<td>811.662</td>
</tr>
<tr>
<td>7</td>
<td>4344</td>
<td>810</td>
<td>39.942</td>
<td>5.706</td>
<td>6.206</td>
<td>814.768</td>
</tr>
<tr>
<td>8</td>
<td>4350</td>
<td>816</td>
<td>34.664</td>
<td>4.333</td>
<td>7.195</td>
<td>819.643</td>
</tr>
<tr>
<td>12</td>
<td>4364</td>
<td>830</td>
<td>32.631</td>
<td>2.719</td>
<td>11.180</td>
<td>832.321</td>
</tr>
<tr>
<td>16</td>
<td>4373</td>
<td>839</td>
<td>29.560</td>
<td>1.847</td>
<td>15.168</td>
<td>840.593</td>
</tr>
<tr>
<td>20</td>
<td>4379</td>
<td>845</td>
<td>32.243</td>
<td>1.612</td>
<td>19.165</td>
<td>846.400</td>
</tr>
<tr>
<td>24</td>
<td>4384</td>
<td>850</td>
<td>27.252</td>
<td>1.136</td>
<td>23.155</td>
<td>850.991</td>
</tr>
<tr>
<td>30</td>
<td>4393</td>
<td>859</td>
<td>24.497</td>
<td>0.817</td>
<td>29.143</td>
<td>859.720</td>
</tr>
<tr>
<td>40</td>
<td>4398</td>
<td>864</td>
<td>17.332</td>
<td>0.433</td>
<td>39.131</td>
<td>864.384</td>
</tr>
<tr>
<td>50</td>
<td>4402</td>
<td>868</td>
<td>15.339</td>
<td>0.307</td>
<td>49.125</td>
<td>868.273</td>
</tr>
<tr>
<td>60</td>
<td>4405</td>
<td>871</td>
<td>15.394</td>
<td>0.257</td>
<td>59.122</td>
<td>871.229</td>
</tr>
<tr>
<td>72</td>
<td>4407</td>
<td>873</td>
<td>13.712</td>
<td>0.190</td>
<td>71.119</td>
<td>873.171</td>
</tr>
</tbody>
</table>

All analyses must be performed on the \(\Delta t_c \) and \(\Delta p_s \) data functions (do not use the \(\Delta t\text{-}\Delta p_w \) data).
Required: Specialized Analysis of Wellbore Storage Distorted Data
You are required to "correct" these wellbore storage distorted test data (i.e., the Δp_w data) using the following relations: (m wbs is the slope of the Δp_w versus Δt data plot (ETR_j data only))

a. The corrected time function (Δt_c): (to be used like Δt)

\[
Δt_c = \frac{Δt - \frac{1}{m_wbs} Δp_w}{1 - \frac{1}{m_wbs} \frac{d}{dΔt}[Δp_w]}
\]

b. The corrected pressure drop function (Δp_s): (to be used like Δp_w)

\[
Δp_s = \frac{Δp_w}{1 - \frac{1}{m_wbs} \frac{d}{dΔt}[Δp_w]}
\]

Specifics:

a. You are to calculate and plot the Δt_c and Δp_s functions.

b. You are to perform a complete analysis of the Δt_c and Δp_s functions using a semilog plot of Δp_s versus log(Δt_c). It is important to note that the Δp_s - Δt_c correction approach does not tend to work well for the very earliest data.

c. You are to describe your analysis/interpretation and results in a summary paragraph.

Results: Specialized Analysis of Wellbore Storage Distorted Data

Cartesian Analysis: Early Time Data

Slope of the Δp_w versus Δt data plot (ETR_j data), m_wbs = \text{975 psi/hr}

Semilog Analysis:

Formation permeability, k = \text{7.65 md}

Near well skin factor, s = \text{5.79}

Summary Observations/Comments:

1. The early time data do not match the semilog straight line.
Cartesian Plot: Early-Time Pressure Data (Lee Ex. 2.2)

"Early Time" Cartesian Plot -- Lee Text Example 2.2
(Analysis of Wellbore Storage Dominated Data)

Regression Equations:
Wellbore Storage Equation:
\[p_{w} (\Delta t) = 3534 + 973.33 \Delta t \]

Legend: Lee Text Example 2.2
- Pressure Data

Data for Lee Example 2.2:
Reservoir Properties:
- \(c = 17.0 \times 10^6 \) psi \(^{-1}\)
- \(r_w = 0.198 \) ft
- \(h = 69 \) ft
- \(\phi = 0.039 \) (fraction)
- \(k = 7.65 \) md
- \(s = 5.79 \)

Oil Properties:
- \(B_o = 1.136 \) RB/STB
- \(\mu_o = 0.8 \) cp

Production Parameters:
- \(q_p = 250 \) STB/D
- \(t_p = 13,630 \) hrs
- \(p_{w} (\Delta t = 0) = 3534 \) psia

Linear Portion Indicates Wellbore Storage Domination

p_{w} (\Delta t = 0) = 3534 \text{ psia}
Semilog Plot: Pressure Data (Lee Ex. 2.2)

Semilog Plot -- Lee Text Example 2.2
(Summary of Average Reservoir Pressure Methods)

Legend: Lee Text Example 2.2
- Pressure Data
- Corrected Data

Data for Lee Example 2.2:
Reservoir Properties:
- $c_f = 17.0 \times 10^{-6} \text{ psia}^{-1}$
- $r_w = 0.198 \text{ ft}$
- $h = 69 \text{ ft}$
- $\phi = 0.039$ (fraction)
- $k = 7.85 \text{ md}$
- $s = 5.79$

Oil Properties:
- $B_o = 1.136 \text{ RB/STB}$
- $\mu_o = 0.8 \text{ cp}$

Production Parameters:
- $q_o = 250 \text{ STB/D}$
- $t_f = 13,630 \text{ hrs}$
- $P_{wf}(\Delta t = 0) = 3534 \text{ psia}$

Wellbore Storage Effects

Radial Flow Region

$m = 70 \text{ psi/cycle}$

$P_{wf}(\Delta t = 1 \text{ hr}) = 4287.6 \text{ psia}$ (Radial Flow Trend)