Modern Time-Rate Relations
Orientation

Time-Rate Relations:
● New time-rate relations which utilize the following components:
 — Hyperbolic and modified-hyperbolic relations,
 — Power-law/stretched exponential relations, and
 — Exponential relations (e.g., the Fulford model).
● The basis for the proposed relations are data diagnostics/characteristics.
● Model basis:
 — Power-law component for approximating early-time behavior.
 — Hyperbolic and exponential components for representing late time behavior.

D-parameter: \([\frac{dq}{dt}/q]\)
● Basis:
 — Based on the definition of loss-ratio.
 — Power-law behavior for almost all tight gas/liquid-rich shale reservoirs.
 — Modified-Hyperbolic model valid for most gas shales.
● Power-law behavior of the D-parameter yields the stretched exponential function.

Conclusions:
● Modeling time-rate behavior with different functional forms reduces uncertainty.
● Power-law exponential has a very strong correlation for tight gas/shale oil cases.
● Stretched exponential should be considered a valid model for tight gas/shales.
● Modified-hyperbolic model remains primary "currency" in time-rate analysis.
● \(\beta_{q,cp}\)-derivative function is primarily dependent on well completion and geology.
SPE 116731

Exponential vs. Hyperbolic Decline in Tight Gas Sands — Understanding the Origin and Implications for Reserve Estimates Using Arps' Decline Curves

D. Ilk, Texas A&M University
A.D. Perego, Anadarko Petroleum Corp.
J.A. Rushing, Anadarko Petroleum Corp.
T.A. Blasingame, Texas A&M University

Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
+1.979.458.1499 — dilhan@tamu.edu
Rate Function Definitions:

- **Loss Ratio:**
 \[
 \frac{1}{D} \equiv -\frac{q}{dq/dt}
 \]

- **Derivative of Loss Ratio:**
 \[
 b \equiv \frac{d}{dt}\left[\frac{1}{D}\right] \equiv \frac{d}{dt}\left[\frac{q}{dq/dt}\right]
 \]

- **Exponential and Hyperbolic Rate Relations:**

 (Exponential Decline)
 \[
 D = \text{con} \rightarrow q = q_i \exp[-D_i t]; \quad \text{or} \quad b = \text{con} \rightarrow q = \frac{q_i}{[1 + bD_i t]^{(1/b)}}
 \]

 (Hyperbolic Decline)

Discussion:
- Hyperbolic relation is mis-applied to transient data.
- What is the "characteristic behavior" of the \(D\) and \(b\)-parameters? Evaluate *continuously using data.*
SPE 116731 — "Power-Law Exponential" Rate Result

Observed Behavior of the "Decline" Parameter \([D(t)]\):

\[
D = -\frac{1}{q} \frac{dq}{dt} \approx D_\infty + n \hat{D}_i t^{-(1-n)} \quad \approx D_\infty + At^{-B}
\]

Solving for Flowrate \([q(t)]\) Using the \([D(t)]\) Relation:

\[
q = \hat{q}_i \exp[-D_\infty t - \hat{D}_i t^n]
\]

Solving for the "Hyperbolic" Parameter \([b(t)]\):

\[
b = \frac{n \hat{D}_i (1-n)}{[n \hat{D}_i + D_\infty t^{(1-n)}]^2} t^{-n}
\]
Discussion: Small "Waterfrac" Gas Well

- Liquid loading effects are obvious in the latter portion of the flowrate data.
- The onset of the boundary-dominated flow regime is observed.
- We observe a very good match of the flowrate data using $D_{\infty}=0$.
Discussion: *Large "Waterfrac" Gas Well*

- Erratic rate behavior caused by liquid loading is seen at late times.
- Outstanding matches of the computed D- and b-parameters with the power-law exponential model are observed.
We convert the "power-law exponential" rate decline model into a dimensionless form.

\[q = \hat{q}_i \exp[-D_\infty t - \hat{D}_i t^n] \quad \rightarrow \quad q_{Dd} = \exp[-\hat{D}_\infty t_{Dd} - t_{Dd}^n] \]
We develop type curves using the dimensionless form of the "power-law exponential" rate decline model.

\[q_{Dd} = \exp\left[-\tilde{D}_\infty t_{Dd} - t_{Dd}^n \right] \]
Discussion:

[Tight Gas Well (Bossier)]

- Excellent match of the data with the type curve for \(n=0.2 \) — this yields an upper bound for the reserves (≈ 5.34 BSCF).
- The lower bound for the reserves \((G_{p,max}) \) is estimated by the second type curve match. \(\bar{D}_\infty = 10^{-3.75} \)
SPE 123298

A Simple Methodology for Direct Estimation of Gas-in-place and Reserves Using Rate-Time Data

N.L. Johnson, Texas A&M University
S.M. Currie, Texas A&M University
D. Ilk, Texas A&M University
T.A. Blasingame, Texas A&M University

Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
+1.979.845.4064 — nathalie.johnson@pe.tamu.edu
Quadratic rate-cumulative production relation can be rearranged to yield a plotting function as:

\[
\frac{q_{gi} - q_g}{G_p} = D_i - \frac{1}{2} \frac{D_i}{G} G_p
\]

The plotting function \((q_{gi} - q_g)/G_p \) versus \(G_p \) yields an intercept in the \(x \)-axis of \(2G \) — i.e., use to estimate \(G \)
Boundary-dominated flow regime can be identified using the α-parameter through the modification of the rate-cumulative production relation:

$$\alpha = \left[\frac{G_p}{G} - \frac{1}{2} \left(\frac{G_p}{G} \right)^2 \right] \left(1 - \frac{q_g}{q_{gi}} \right)$$

The plotting function, α versus G_p/G has a diagnostic value in establishing the boundary-dominated flow regime (i.e., $\alpha = 2$ as $q_g \to 0$ and $G_p \to G$).
SPE 123298 — q_g-G_p Relation

The plotting functions q_g/q_{gi} versus G_p/G and q_g versus G_p are used in conjunction with the previous plotting functions to yield the best estimate for G.

Discussion:
- q_{gi}, D_i, G parameters are calibrated using the plotting functions.
- We iterate on all plots until the best match is obtained.
SPE 123298 — Tight Gas Well

a. Plotting Function 1: (Tight Gas Well) \(\frac{q_{gi} - q_g}{G_p} \) vs \(G_p \) Plot (Cartesian scale).

b. Plotting Function 2: (Tight Gas Well) "\(\alpha \)" Diagnostic Plot — reverse solution for the \(\alpha \)-parameter (Cartesian scale).

c. Plotting Function 3: (Tight Gas Well) Model Validation Plot — \(\frac{q_g}{q_{gi}} \) versus \(\frac{G_p}{G} \) (Cartesian scale).

d. Plotting Function 4: (Tight Gas Well) Model Validation Plot — \(q_g \) (data and model) versus \(G_p \) (log-log format).
SPE 125031

Decline Curve Analysis for HP/HT Gas Wells: Theory and Applications

D. Ilk, Texas A&M University
J.A. Rushing, Anadarko Petroleum Corp.
T.A. Blasingame, Texas A&M University

Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
+1.979.845.4064 — dilhan@tamu.edu
Discussion: Rate-Time Gas Flow Relation (Knowles et al.)
- Basis is the linearization of the nonlinear $\mu_g c_g$ term (Ansah, et al.).
- D-function and b-function are formulated using the definitions for loss-ratio and the derivative of the loss-ratio.
Discussion: Rate-Cumulative Gas Flow Relation

- Definition of the loss-ratio can be re-cast in terms of rate and cumulative production.
- A quadratic relationship exists between rate and cumulative production.
Discussion: Methodology

- The main goal is to match the data with the model using the definitions for the \(q-D-b \) functions during the boundary-dominated flow regime.
- \(b \)-function \(\rightarrow 0.5 \) for high drawdown cases (almost constant behavior).
Field Example: Application of the Methodology

- 3.5 years of daily data are available for a hydraulically fractured well completed in a HP/HT gas reservoir.
- Well clean-up effects, liquid-loading, and operational changes are observed in the data trends.
- The flowrate data are reviewed prior to analysis; and any erroneous/redundant data points are removed.
- The half-slope trend is evident in the rate-integral derivative function.

\((p_i = 14000 \text{ psia and } T_R = 260^\circ F)\)
Field Example: Application of the Methodology

- For the computation of D- and b-parameter data functions we remove the outlying data points; then we perform the numerical differentiation.
- Our analysis using the proposed semi-analytical relation provides a gas-in-place estimate of approximately 8.0 BSCF.
Field Example: Application of the Methodology

- Reasonable matches of the D-function with the data using the semi-analytical model is achieved (post-transient flow only).
- The matches of the b-function data with the semi-analytical model are problematic — data indicate no unique characteristic behavior.
- Computation of the b-parameter data function is severely affected by factors such as liquid loading.
Field Example: Application of the Methodology
- We observe a good match of the flowrate data with the model (except for the early time data affected by "cleanup").
- The "power-law exponential" model yields $G_{p,\text{max}} \approx 8.0$ BSCF.
- Gas-in-place estimates are consistent comparing the methods we used.
SPE 135616

Hybrid Rate-Decline Models for the Analysis of Production Performance in Unconventional Reservoirs

D. Ilk*, Texas A&M U./DeGolyer and MacNaughton
S.M. Currie, Texas A&M U./Devon Energy Corp.
D. Symmons, Consultant
J.A. Rushing, Apache Corp.
T.A. Blasingame, Texas A&M University

*DeGolyer and MacNaughton
Dallas, TX 75244
+1.214.891.7381 — dilk@demac.com
SPE 135616 — Stretched Exponential Function [Kohlrausch (1854)]

Observed Behavior of Decline Parameter (D):

\[
D \equiv -\frac{1}{q} \frac{dq}{dt} \approx n\hat{D}_i t^{-(1-n)}
\]

Solving for Flowrate:

\[
q = \hat{q}_i \exp[-\hat{D}_i t^n]
\]

Literature:
- Kohlrausch (1854).
- Kisslinger (1993)
- Decays in randomly disordered, chaotic, heterogeneous systems (e.g. relaxation, aftershock decay rates, etc.).

Valkó (2009)

\[
q(t) = \hat{q}_i \exp[-(t / \tau)^n]
\]

Jones (1942) and Arps (1945)

\[
q(t) = q_o \exp \left[-D_o t^{m-1} \over 100 (m-1) \right]
\]
Discussion: Stretched Exponential Function

- Single, double and four exponentials are used to approximate the data using linear least squares.
- Stretched exponential function can be described as a linear super-position of exponential decays.

$$q(t) = \hat{q}_i \exp[-\hat{D}_i t^n]$$

$$q(t) = \sum_{i=1}^{n} q_i \exp[-a_i t]$$
Discussion: Rate-Time Gas Flow Relation (Knowles et al.)

- **Basis** is the linearization of the nonlinear "$\mu_g c_g"$$\text{ term (Ansah et al.).}
- **D-function** and **b-function** are formulated using the definitions for loss-ratio and the derivative of the loss-ratio.
- See Ansah et al. (2000), Knowles et al. (1999), and Ilk et al. (2009) for more details.

Rate-Time Relation:

\[
q_{Dd} = \frac{4 p_{wD}^2 \exp[-p_{wD} t_{Dd}]}{(1 + p_{wD}) - (1 - p_{wD}) \exp[-p_{wD} t_{Dd}])^2}
\]

Conclusions:

- Theoretical justification for hyperbolic decline relation for gas flow?
- **b** = 0.5 for high drawdown cases ($p_{wf}/p_i \leq 0.05$).
- ONLY valid for **BOUNDARY-DOMINATED FLOW REGIME**.
- Exponential decline at very late times.
SPE 135616 — $\beta_{q,cp}$-Derivative

$\beta(t)$-Derivative: Well Test Analysis (Hosseinpour-Zonoozi et al. 2006)

\[
\Delta p \beta_d(t) = \frac{d \ln(\Delta p)}{d \ln(t)} = \frac{1}{\Delta p} \frac{d\Delta p}{dt}
\]

$\beta(t)$-Derivative: Modification for this work (for constant pressure)

\[
\beta_{q,cp}(t) = -\frac{d \ln(q)}{d \ln(t)} = -\frac{t}{q} \frac{dq}{dt}
\]

Discussion:
- Strong diagnostic character of the $\beta_{q,cp}$-derivative function.
- Holly Branch tight gas field production data exhibit similar characteristic behavior.
- Early time data are affected by "non-reservoir" effects.
SPE 135616 — $\beta_{q,cp}$-Derivative
Discussion:
- Fractured vertical gas well with 43 years of production.
Discussion:

- Boundary-dominated flow regime is apparent at late times.
Discussion:

- Horizontal well with multiple fractures with 340 days of production.
Discussion:

● Outstanding data quality provides remarkable character.
Discussion: *Rate-Time Models*

- Rate-time models decrease the uncertainty in reserves estimates.