Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
Module for:

Analysis of Reservoir Performance

Pressure Transient Testing

Orientation

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
Pressure Transient Testing

- Orientation — This module focuses on familiarization with deliverability tests and the analysis and interpretation of pressure transient test data. The following issues must be clear: test design, data acquisition/data quality control, and test execution are critical activities.

- Deliverability Testing:
 - "4-point" tests are appropriate (analyze as well tests).
 - Isochronal/modified isochronal testing is difficult.

- Pressure Transient Test Analysis/Interpretation:
 - Conventional analysis — specialized plots.
 - Model identification — type curves, simulation, etc.
 - Test design — simplicity is the key.

(25 November 2003)
Deliverability Testing — *Basics*

a. "Standard" 4-point test deliverability test — note that the rates increase (to protect the reservoir).

b. "Isochronal" test sequence — note that each "buildup" is required to achieve p_i.

c. Modified "Isochronal" test sequence — note that each "buildup" is *not* required to achieve p_i.

\[
q = C (\bar{p}^2 - p_{wf}^2)^n
\]

\[
\Delta p^2 = \bar{p}^2 - p_{wf}^2 = aq + bq^2
\]

\[
q = C [p_p (\bar{p}) - p_p (p_{wf})]^n
\]

\[
\Delta p_p = p_p (\bar{p}) - p_p (p_{wf}) = aq + bq^2
\]

d. Governing equations for "deliverability" test analysis/interpretation.

(25 November 2003)
Well Test Analysis — *Multirate Testing*

Summary of Well Test Analysis (Conventional Approach)

Well CII-018 (A-098) [Test Date: 7 August 1992]

- **Flowrate, \(q \)**: 57000 MSCF/day
- **\(p_{wf} \) at \(\Delta t = 0 \)**: 2445 psia
- **Reservoir Condition**: Homogeneous
- **Well Condition**: Wellbore Storage & Skin
- **Boundary Condition**: Infinite
- **Wellbore Storage Coeff., \(c_{sf} \)**: 0.28 STB/psi
- **\(c_{sf}/c_{sf} \)**: 0.46
- **\(\alpha_D \)**: 469
- **Total Skin Factor, \(s' \)**: 5.71
- **Mechanical Skin Factor, \(s \)**: 2.86
- **Non Darcy Coefficient, \(D \)**: 5x10^{-5} (MSCF/day)^{-1}
- **Permeability-Thickness, \(kh \)**: 6170 md-ft
- **Permeability, \(k \)**: 9.49 md
- **Mobility, \(k/\mu \)**: 233 md/cp

Well Test Summary Plot — Well CII-018 (A-098) [Test Date: 7 August 1992]

a. Multirate (4-point) rate sequence (note pressure match (solid trend through the data)).

Log-log Analysis Plot — Well CII-018 (A-098) [Test Date: 7 August 1992]

b. Log-log "summary plot" — note good agreement in comparison of data and model.

c. Results summary — note that non-Darcy flow, changing wellbore storage, and an infinite-acting reservoir system were considered in this analysis.
Well Test Analysis — "Well Interference"

Well interference plot for Well C-II-18 (A-098)

a. "Well Interference" plot — note the linear trend through the data functions (confirms interference).

b. Log-log "summary plot" — note the corrected and uncorrected data (well interference).

c. Horner semilog plot — note the two semilog trends confirm the radial composite model.

Discussion:

- "Well interference" is much more common than previously thought — and we must recognize the characteristic behavior on each plot:
 - Specialized plot (a).
 - Log-log plot (b).
 - Semilog plot (c).

(25 November 2003)
Well Test Analysis — *Radial Flow Analysis* (1/6)

Log-log “preliminary analysis” plot — wellbore storage and radial flow (C_s, k).

Semilog “middle-time” plot — used to analyze radial flow behavior (k, s).

Cartesian “Arps” plot — used to estimate average reservoir pressure.

Cartesian “early-time” plot — used to analyze wellbore storage (p_0, C_s).

Horner “middle-time” plot — used to analyze radial flow behavior (k, s, p^*).

Log-log “summary” plot — summary of all analysis (C_s, k, s, A, etc.).

(25 November 2003)

Pressure Transient Testing Slide — 8
Example: "Preliminary Analysis" (log-log).

(25 November 2003)
Example: "Horner Semilog Analysis" (semilog).
Example: "Muskat-Arps Plot" (Cartesian).
● Example: "Analysis Summary Plot" (log-log).

(25 November 2003)
Example Analysis: (Lee text (1st edition), Example 2.2)

Given Data: (Lee text (1st edition), Example 2.2)

These data are taken from Example 2.2 in the Lee text, *Well Testing*. These data are for a pressure "buildup" test run on an oil (liquid) well.

Reservoir properties:

- \(\phi = 0.039 \)
- \(r_w = 0.198 \text{ ft} \)
- \(c = 17 \times 10^{-6} \text{ psia}^{-1} \)
- \(h = 69 \text{ ft} \)

Oil properties:

- \(B_o = 1.136 \text{ RB/STB} \)
- \(\mu_o = 0.8 \text{ cp} \)

Production parameters:

- \(p_w(\text{at} \Delta t = 0) = 3534 \text{ psia} \)
- \(q_o = 250 \text{ STB/D} \)
- \(t_p = 13,630 \text{ hr} \)

Test Data and Data Functions:

<table>
<thead>
<tr>
<th>(\Delta t, \text{ hr})</th>
<th>(p_w(t), \text{ psia})</th>
<th>(p_w(\Delta t), \text{ psia})</th>
<th>(\Delta p, \text{ psi})</th>
<th>(\Delta p', \text{ psi})</th>
<th>(\Delta p'', \text{ psi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>3680</td>
<td>3614.6</td>
<td>44</td>
<td>146</td>
<td>149.471</td>
</tr>
<tr>
<td>0.2</td>
<td>3723</td>
<td>3636.35</td>
<td>189</td>
<td>166.252</td>
<td>102.353</td>
</tr>
<tr>
<td>0.3</td>
<td>3800</td>
<td>3678.2</td>
<td>266</td>
<td>213.02</td>
<td>144.204</td>
</tr>
<tr>
<td>0.4</td>
<td>3866</td>
<td>3716.99</td>
<td>332</td>
<td>236.405</td>
<td>182.994</td>
</tr>
<tr>
<td>0.5</td>
<td>3920</td>
<td>3752.26</td>
<td>386</td>
<td>247.26</td>
<td>218.26</td>
</tr>
<tr>
<td>1</td>
<td>4103</td>
<td>3884.18</td>
<td>569</td>
<td>320.045</td>
<td>350.182</td>
</tr>
<tr>
<td>2</td>
<td>4250</td>
<td>4033.15</td>
<td>716</td>
<td>499.154</td>
<td>199.547</td>
</tr>
<tr>
<td>4</td>
<td>4320</td>
<td>4160.81</td>
<td>786</td>
<td>68.3932</td>
<td>626.813</td>
</tr>
<tr>
<td>6</td>
<td>4340</td>
<td>4172.42</td>
<td>806</td>
<td>40.8058</td>
<td>683.419</td>
</tr>
<tr>
<td>7</td>
<td>4344</td>
<td>4235.22</td>
<td>810</td>
<td>39.942</td>
<td>701.223</td>
</tr>
<tr>
<td>8</td>
<td>4350</td>
<td>4249.2</td>
<td>816</td>
<td>34.6643</td>
<td>715.203</td>
</tr>
<tr>
<td>12</td>
<td>4364</td>
<td>4285.29</td>
<td>830</td>
<td>32.6308</td>
<td>751.286</td>
</tr>
<tr>
<td>16</td>
<td>4373</td>
<td>4306.14</td>
<td>839</td>
<td>29.56</td>
<td>772.142</td>
</tr>
<tr>
<td>20</td>
<td>4379</td>
<td>4320.14</td>
<td>845</td>
<td>32.2431</td>
<td>786.135</td>
</tr>
<tr>
<td>24</td>
<td>4384</td>
<td>4330.38</td>
<td>850</td>
<td>27.2523</td>
<td>796.375</td>
</tr>
<tr>
<td>30</td>
<td>4393</td>
<td>4342.03</td>
<td>859</td>
<td>24.4973</td>
<td>808.032</td>
</tr>
<tr>
<td>40</td>
<td>4398</td>
<td>4355.43</td>
<td>864</td>
<td>17.3321</td>
<td>821.428</td>
</tr>
<tr>
<td>50</td>
<td>4402</td>
<td>4364.36</td>
<td>868</td>
<td>15.3391</td>
<td>830.357</td>
</tr>
<tr>
<td>60</td>
<td>4405</td>
<td>4370.89</td>
<td>871</td>
<td>15.3939</td>
<td>836.888</td>
</tr>
<tr>
<td>72</td>
<td>4407</td>
<td>4376.74</td>
<td>873</td>
<td>13.7123</td>
<td>842.745</td>
</tr>
</tbody>
</table>

Graphical Analysis:

(Lee text (1st edition), Example 2.2)

- **Early Time Cartesian Analysis:** \(p_w \) is plotted versus \(\Delta t \)

\[
C_s = \frac{q_w B_o}{24 m_{wbs}}
\]

- **"Horner" relations:** \(p_w \) is plotted versus \(\log \left(\frac{t_p + \Delta t}{\Delta t} \right) \)

\[
k = 162.6 \frac{q_w B_o}{m_{h}} \]

\[
s = 1.1513 \left(\frac{p_w(t_p) - p_w(\Delta t = 0)}{m} \right) - \log \left(\frac{t_p}{t_p + 1} \right) - \log \left(\frac{k}{\phi_c \mu_o} \right) + 3.2275
\]

- **"MDH" relations:** \(p_w \) is plotted versus \(\log(\Delta t) \)

\[
k = 162.6 \frac{q_w B_o}{m_{h}} \]

\[
s = 1.1513 \left(\frac{p_w(t_p) - p_w(\Delta t = 0)}{m} \right) - \log \left(\frac{k}{\phi_c \mu_o} \right)^2 + 3.2275
\]

- "Modified Muskat" plotting functions: \(p_w \) is plotted versus \(\frac{d}{dM} [p_w] \) to determine \(\tilde{p} \)

 - **"Modified Muskat" Pressure Equation:**
 \[
 \tilde{p} = p_w = a \exp (b \Delta t)
 \]

 - **"Modified Muskat" Pressure Derivative Equation:**
 \[
 \frac{d}{dM} [p_w] = - a b \exp (b \Delta t)
 \]

 - **"Modified Muskat" Plotting Relation:**
 \[
 p_w = \tilde{p} - \frac{1}{b} \frac{d}{dM} [p_w] \]

 \(\tilde{p} \) = intercept of the straight-line trend at \(\frac{d}{dM} [p_w] = 0 \)

Working relations — Lee text (1st edition), Example 2.2.

(25 November 2003)
Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Type Curve Library:
Radial Flow — Wellbore Storage and Skin Effects

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu
Well Test Analysis — *WBS Type Curves* (1/4)

- **a.** Type Curve: Radial flow with wellbore storage and skin effects (p_{D_i}, p_{Ddd}).
- **b.** Type Curve: Radial flow with wellbore storage and skin effects ($p_{D_i}, p_{Ddi}, p_{Dri}$).
- **c.** Type Curve: Radial flow with wellbore storage and skin effects (p_{D_i}, p_{Ddia}).
- **d.** Type Curve: Radial flow with wellbore storage and skin effects (p_{Di}, p_{Ddi}).
- **e.** Type Curve: Radial flow with wellbore storage and skin effects (p_{Di}, p_{Ddi}, p_{Dir}).
- **f.** Type Curve: Radial flow with wellbore storage and skin effects (p_{Di}, p_{Dir}).

(25 November 2003)
Type Curve: "Gringarten-Bourdet" \((p_D, p_{Dd})\).
Type Curve for an Unfractured Well in an Infinite-Acting Homogeneous Reservoir with Wellbore Storage and Skin Effects

Legend: Radial Flow Type Curves
- p_D Type Curve
- p_D'' Type Curve

Wellbore Storage Domination Region $p_D = \text{Unit Slope Line}$

Radial Flow Region $p_D'' = 1/2$

Wellbore Storage Distortion Region

- Type Curve: "Second Derivative" (p_D, p_D'').

(25 November 2003)
Type Curve: "Integral Functions" (p_{Di}, p_{Did}).

(25 November 2003)
Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Type Curve Library:
Radial Flow — Boundaries/Composite Reservoir

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
a. Type Curve for sealing faults \((p_{Dd}) \).

b. Type Curve for conductive (leaky) faults \((p_{Dd}) \).

c. Type Curve for pressure buildup test in a closed rectangular reservoir \((p_{Dd}) \).

d. Type Curve for pressure buildup test in a closed rectangular reservoir \((p_{Did}) \).
Well Test Analysis — *Bounded Reservoir* (2/3)

Type Curves for Sealing Faults
(Infinite-Acting Homogeneous Reservoir)

- **Type Curve:** "Sealing Faults\(^{(p_{Dd})}\)."

(25 November 2003)
Well Test Analysis — **Bounded Reservoir**

- **Type Curve:** "Closed Reservoir" (Buildup Only) (p_{Dd}).

(25 November 2003)
Well Test Analysis — Composite Systems (1/2)

a. Composite Reservoir ($\eta_r = 1 \times 10^{-3}$).

b. Composite Reservoir ($\eta_r = 1 \times 10^{-2}$).

c. Composite Reservoir ($\eta_r = 1 \times 10^{-1}$).

d. Composite Reservoir ($\eta_r = 1 \times 10^{0}$).

e. Composite Reservoir (all η_r cases).

(25 November 2003)
Type Curve: all η_r cases (Tang-Brigham).
Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Type Curve Library:
Vertically-Factured Wells

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
Well Test Analysis — Fractured Wells

1. Type Curve: \(C_{Df} = \text{various} \), no \(C_D \) cases.

2. Type Curve: \(C_{Df} = 1 \), \(C_D \) = various.

3. Type Curve: \(C_{Df} = 2 \), \(C_D \) = various.

4. Type Curve: \(C_{Df} = 5 \), \(C_D \) = various.

5. Type Curve: \(C_{Df} = 10 \), \(C_D \) = various.

6. Type Curve: \(C_{Df} = 1 \times 10^3 \), \(C_D \) = various.

(25 November 2003)
Type Curve: Various C_{fD} (Cinco-Samaniego).
"Pseudoradial flow" skin factor correlation for a fractured well (Cinco-Samaniego).
Well Test Analysis — Fractured Wells

Type Curve: $C_{fD}=2$, various C_{Df} cases.
Well Test Analysis — Fractured Wells

- Type Curve: $C_{fD}=1\times10^3$, various C_{Df} cases.

(25 November 2003)
Pressure Transient Testing
Slide — 30
(Formation Evaluation and the Analysis of Reservoir Performance)

Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Type Curve Library:
Dual Porosity (Naturally Fractured) Reservoirs

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
Well Test Analysis — *Dual Porosity Reservoirs* (1/5)

a. Type Curve: \(\omega, \lambda = \text{various, } pss\) interporosity flow.

b. Type Curve: \(\lambda C_D = 1\times10^{-1}, pss\) interporosity flow.

c. Type Curve: \(\lambda C_D = 1\times10^{-4}, pss\) interporosity flow.

d. Type Curve: \(\omega, \lambda = \text{various, transient}\) interporosity flow.

e. Type Curve: \(\lambda C_D = 1\times10^{-1}\), *transient* interporosity flow.

f. Type Curve: \(\lambda C_D = 1\times10^{-4}\), *transient* interporosity flow.

(25 November 2003)

Pressure Transient Testing Slide — 32
Well Test Analysis — *Dual Porosity Reservoirs* (2/5)

Type Curve: Pseudosteady-State Interporosity Flow (Onur, et al format).

Type Curve for an Unfractured Well in an Infinite-Acting Naturally-Fractured Reservoir with NO Wellbore Storage or Skin Effects. --Plotting Format From: paper SPE 23830, Onur, M., and Satman, A.: "New Type Curves to Determine Naturally Fractured Reservoir Parameters"
Type Curve: Transient Interporosity Flow (Onur, et al format).

(25 November 2003)
Type Curve: $\lambda C_D = 1 \times 10^{-4}$, pss interporosity flow.
Type Curve: $\lambda C_D = 1 \times 10^{-4}$, transient interporosity flow.
Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Example Case: Pre- and Post-Fracture Buildup Tests

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu
Example — Pre-Fracture Buildup Analysis (1/4)

- **a.** Log-log "pre-analysis" plot (Δt_{ae} format) — orientation and identification of flow regimes.

- **b.** Cartesian "early-time" plot — used to analyze wellbore storage (p_0, C_s).

- **c.** Semilog "middle-time" plot — used to analyze radial flow behavior (k, s).

- **d.** Horner "middle-time" plot — used to analyze radial flow behavior (k, s, etc.).

- **e.** Log-log "summary" plot (Δt_a format) — summary of all analysis (C_s, k, s, etc.).

- **f.** Log-log "summary" plot (Δt_{ae} format) — summary of all analysis (C_s, k, s, etc.).

(25 November 2003)
Example — **Pre-Fracture Buildup Analysis** (2/4)

Example: "Preliminary Analysis" (log-log).

(25 November 2003)
Example — Pre-Fracture Buildup Analysis (3/4)

● Example: "Horner Semilog Analysis" (semilog).

(25 November 2003)

Pressure Transient Testing
Slide — 40
Example — Pre-Fracture Buildup Analysis (4/4)

● Example: "Analysis Summary Plot" (log-log).

Log-Log Plot (Full Test History)
(Dunn Pre-Fracture Treatment Pressure Buildup Example)

Legend: Mid-Ccontinent Gas Well
(Pre-Fracture Buildup)
- $\Delta p_p = p_{pws} - p_{pwf}$ ($\Delta t=0$), psi
- $\Delta p_p = \Delta t_{ae} \left| \frac{d(p_{pws})}{d\Delta t_{ae}} \right|$, psi

Analysis Results
- $k = 1.57$ md
- $s = 92$
- $C_{D1} = 131.96$ (0.014 RB/psi)
- $C_{D2} = 216.8$ (0.023 RB/psi)
- $I_{Dchf} = 1761$ (0.145 hr)

Effective Pseudotime, $\Delta t_{ae} = \Delta t_a / (1 + \Delta t_a / t_p)$, hours ($t_p = 64$ hr)
Example — *Post-Fracture Buildup Analysis* (1/5)

a. Log-log "pre-analysis" plot (Δt_{ae} format) — orientation and identification of flow regimes.

b. Cartesian "early-time" plot — used to analyze wellbore storage (p_0, C_s).

c. Semilog "middle-time" plot — used to analyze radial flow behavior (k, s).

d. Horner "middle-time" plot — used to analyze radial flow behavior (k, s, etc.).

e. "Type curve" plot (Δt_{ae} format) — summary of all analysis (C_{Dh}, k, x_r, C_{ID}).

f. Log-log "summary" plot (Δt_{ae} format) — summary of all analysis (C_{Dh}, k, x_r, C_{ID}).

(25 November 2003)
Example — *Post-Fracture Buildup Analysis* (2/5)

- Example: "Preliminary Analysis" (log-log).

(25 November 2003)
Pressure Transient Testing
Slide — 43
Example — **Post-Fracture Buildup Analysis** (3/5)

Horner Plot (Radial Flow—Includes Rate History)

(Dunn Post-Fracture Treatment Pressure Buildup Example)

Legend: Mid-Continent Gas Well

Middle Time Linear Trend

- **Data for Dunn Example:**
 - Fluid Properties:
 - $B_o=0.6052$ RB/MSCF
 - $k_o=0.0345$ cp
 - $c_m=9.55 \times 10^{-5}$ psia$^{-1}$
 - Formation Properties:
 - $r_o=0.33$ ft
 - $h=56$ ft
 - $\phi=0.095$ (fraction)
 - Production Parameters:
 - $p_{wp}(t_f)=2535.2$ psia
 - $t_f=2130$ hr
 - $q=10,500$ MSCF/D
 - Analysis Results:
 - $k = 1.57$ md
 - $x_f = 151.61$ ft
 - $C_{ID} = 5.0$
 - $C_{DF} = 1 \times 10^{-3}$

- $p_p^* = 3307.6$ psia
- $p_{ws} = 3307.6 - 233.9 \log [(t_p + \Delta t_a) / \Delta t_a]$ ($p_{ws,1hr} = 2529$ psia)

● Example: "Horner Semilog Analysis" (semilog).

(25 November 2003)

Pressure Transient Testing
Slide — 44
Example — Post-Fracture Buildup Analysis (4/5)

Type Curve Analysis—Wellbore Storage and Skin Effects Model (Fractured Well)
(Dunn Post-Fracture Treatment Pressure Buildup Example)

- Example: "Type Curve Plot" (log-log).

(25 November 2003)

Pressure Transient Testing Slide — 45
Example — *Post-Fracture Buildup Analysis* (5/5)

- Example: "Analysis Summary Plot" (log-log).

(25 November 2003) Pressure Transient Testing Slide — 46
Module for:
Analysis of Reservoir Performance
Pressure Transient Testing

Comment

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu

(25 November 2003)
Well Test Analysis — **Scaling**

- Pressure transient analysis "sees" the reservoir as a volume-averaged set of properties.
- New solutions/models will also have this view of the reservoir — but, quantifying heterogeneity may (or may not) be possible by the analysis of pressure transient test data.
- Scaling will remain a major issue — regardless of the mechanism used to analyze reservoir performance.

From: Simulator Parameter Assignment and the Problem of Scaling in Reservoir Engineering — Halderson (1986).

(25 November 2003)
End of Presentation

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116 (USA)
(+1) 979.845.2292 — t-blasingame@tamu.edu
References: *Pressure Transient Testing*

Text/References:

General:

1. Course Notes for PETE 324, Well Performance Analysis, Texas A&M U., College Station, TX (http://pumpjack.tamu.edu/~t-blasingame/P324_reference/).

(25 November 2003)