Module for:

Resistivity Log Calculations

J. L. Jensen
W.B. Ayers
T.A. Blasingame
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
Resistivity Log Calculations: Basics

- Apparent Water Resistivity (R_{wa}):
 - Select model for Formation Factor (F)
 - $F = a/\phi^m$ (select a and m as appropriate for formation)
 - Calculate $R_{wa} = R_t/F$ (use porosity logs for ϕ estimates)
 - Apply in water zone.
 - Use smallest estimate of R_{wa}.

- Water Resistivity from SP Approach:
 - Governing relation: (in a water zone)
 - $R_w = R_{mf} \cdot 10^{SP/K}$ (Correlation for K: $K = (T_f + 505)/8$)

- Water Saturation:
 - Governing relation: (Archie's second law)
 - $S_w = [(a/\phi^m)(R_w/R_t)]^{1/n}$
Hingle Plot:

- Governing relation:
 \[(S_w)^n = (a/\phi^m)(R_w/R_t) = (aR_w)/(\phi^mR_t)\]

- Exponentiating the entire relation by \(1/m\) gives:
 \[(S_w)^{n/m} = (aR_w)^{1/m}(1/R_t)^{1/m}(1/\phi)\]
 Or, \((1/R_t)^{1/m} = (1/aR_w)^{1/m}(S_w)^{n/m}\phi\)

Approach:

- Concept: \((1/R_t)^{1/m}\) versus \(\phi\); Slope = \((S_w)^{n/m}(1/aR_w)^{1/m}\)

- Assume: \(a=1, m=n=2\)

- Plotting Function: \((1/R_t)^{1/2}\) versus \(\phi\); Slope = \(S_w/(R_w)^{1/2}\)

Interpretation:

- \(S_w = 1\) case has maximum slope, estimate \(R_w\) from this case.

- Knowing \(R_w\), generate other lines using:
 \[(1/R_t)^{1/2} = (1/aR_w)^{1/2}(S_w\phi)\]
Example Hingle Plot — Note that in this plot the density log function (ρ_d) is substituted for porosity (gives ρ_m at intercept) (Jensen (2002)).
Resistivity Log Calculations: Pickett Plot

- Pickett Plot:
 - Governing relation:
 - \((S_w)^n = (a/\phi^m)(R_w/R_t) = (aR_w)/(\phi^m R_t)\)
 - Solve for \(R_t\):
 \[R_t = (aR_w)/(\phi^m (S_w)^n) = (aR_w) (\phi^{-m}) ((S_w)^{-n})\]
 - Taking the logarithm:
 \[\log(R_t) = \log(aR_w) - m\log(\phi) - n\log(S_w)\]
 - Concept:
 - \((aR_w)\) = constant.
 - \((S_w)\) is constant for a given \(\log(R_t)\) versus \(\log(\phi)\) trend.
 - Approach:
 - Plot \(\log(R_t)\) versus \(\log(\phi)\).
 - Establish \(S_w = 1\) trend.
 - Interpretation: (select \(m\) and \(n\) as appropriate)
 - Using \(S_w = 1\) trend, estimate \((aR_w)\) (intercept at \(\phi = 1\)).
 - Use \(R_t = (aR_w) \phi^m (S_w)^{-n}\) to generate \(R_t - \phi\) trends for \(S_w\) values.
Resistivity Log Calculations: Pickett Plot (2/2)

- Example Pickett Plot — Note the $S_w=1$ trend (Jensen (2002)).
- Example Pickett Plot — Note the S_w trends (Jensen (2002)).