Self-Study Objectives: *Analysis of Reservoir Performance* [Blasingame]

Introduction to Reservoir Engineering:

- Be familiar with the World Oil Resources ... Slides — 3-4
- Be familiar with the Reservoir Structure/Depositional Environments Slide — 5
- Be familiar with Common Depositional Structures ... Slide — 6
- Be familiar with the Concept of Porosity (packings of spheres) Slide — 7
- Be familiar with the Concept of Porosity (unconsolidated sands) Slide — 8
- Be familiar with the Concept of Permeability (Darcy’s Experiment) Slide — 9
- Be familiar with the Concept of Permeability — Definition of a “Darcy” Slide — 10
- Be familiar with Petrophysics — Early Correlation Concepts Slide — 12
- Be familiar with Petrophysics — Introduction to Geology Slide — 2
- Be familiar with Phase Behavior .. Slides — 11-14
 - Phase Behavior (Example Gas Data/Correlations) .. Slide — 13
 - Phase Behavior (Vapor-Liquid Equilibria) ... Slide — 14
- Be familiar with Formation Evaluation .. Slides — 15-17
 - Formation Evaluation (Types and Uses of Well Logs) .. Slide — 15
 - Formation Evaluation — Formation Factor (ϕ) .. Slide — 16
 - Formation Evaluation — Formation Factor (S_o) ... Slide — 17
- Be familiar with Pressure Transient Analysis ... Slides — 18-19
- Reservoir Modeling — Introduction .. Slides — 20-22
 - Reservoir Modeling — Preliminary Work ... Slide — 21
 - Reservoir Modeling — History Matching ... Slide — 22
 - Reservoir Modeling — Forecasting .. Slide — 23
 - Reservoir Modeling — Perspectives ... Slide — 24
 - Reservoir Modeling — General Concepts ... Slide — 25
 - Reservoir Modeling — Potential Areas of Conflict ... Slide — 26
 - Reservoir Modeling — Resolution of Conflicts .. Slide — 27
- Be familiar with the History of Reservoir Engineering ... Slides — 28-34
 - History of Reservoir Engineering — Orientation .. Slide — 28
 - History of Reservoir Engineering — Timelines .. Slide — 29
 - History — Tasks of the Reservoir Engineer ... Slide — 30
 - History — Data Sources/Reservoir Engineering Workflows Slide — 31
 - History — Fundamental Drive Mechanisms .. Slide — 32
 - History — Trapping Mechanisms .. Slide — 33
 - History — Trapping Mechanisms (Comments from Muskat) Slide — 34

Reservoir Petrophysics: Introduction to Geology

- Be familiar with Geology ... Slides — 2-5
 - Geology — Reservoir Petrophysics — Introduction to Geology Slide — 2
 - Geology — Basic Porosity Types — Sandstones ... Slide — 3
 - Geology — Sandstone Depositional Systems .. Slide — 4
 - Geology — Carbonate Depositional Systems — ϕ and k Slide — 5
- Be familiar with Petrophysics ... Slides — 6-7
 - Petrophysics — Effect of Small-Scale Heterogeneities Slide — 6
 - Petrophysics — Example — $k_{v,w}$, $k_{p,W}$ with $k_{v,n}$ mean Slide — 7
- Reservoir Scale Issues — Halderson Schematics .. Slide — 8
- Geology/Petrophysics — Questions to Consider ... Slide — 9
- Be familiar with Flow Concepts .. Slides — 11-14
 - Flow Concepts — Klinkenberg Effect ... Slide — 12
 - Flow Concepts — High-Velocity Flow in Porous Media .. Slide — 13
 - Flow Concepts — Klinkenberg Effect — H$_2$, Air, and CO$_2$ Slide — 14
- Be familiar with Reservoir Petrophysics .. Slides — 15-22
 - Reservoir Petrophysics — Low/Ultra-Low Permeability Issues (Nelson) Slide — 15
 - Reservoir Petrophysics — Permeability Characterizations/Correlations Slide — 16
 - Reservoir Petrophysics — $k = a \exp[b \phi]$ (Schematic Trends) Slide — 17
 - Reservoir Petrophysics — $k = a \exp[b \phi]$ (Archie Trends) Slide — 18
 - Reservoir Petrophysics — Archie $k = \phi^{-m}$ Relations Slide — 19-20
 - Reservoir Petrophysics — Porosity-Permeability — Power Law Relation Slide — 21
 - Reservoir Petrophysics — Fractal Model for Permeability (Pape) Slide — 22
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Reservoir Petrophysics: Introduction to Geology (continued)

- Be familiar with Reservoir Petrophysics (continued) .. Slide — 15-26
 - Reservoir Petrophysics — Influence on ϕ and k (Unconsolidated Sand) .. Slide — 23
 - Reservoir Petrophysics — ϕ and k (Power Law Relation) ... Slide — 24
 - Reservoir Petrophysics — Cornell-Katz Relation for High-Velocity Flow ... Slide — 26

Phase Behavior: Introduction to Phase Behavior

- Phase Behavior — Learning Objectives .. Slide — 2
- Phase Behavior — Introduction to Reservoir Fluids (Classifications, Definitions, Examples) Sli
 - Phase Behavior — Classification of Reservoir Fluids (McCain) ... Slide — 5
 - Phase Behavior — Fluid Types and Petroleum Products .. Slide — 6
 - Phase Behavior — PT Diagrams .. Slid
 - Phase Behavior — PT Diagram — Single Component System ... Slide — 7
 - Phase Behavior — PT Diagram — Multi-Component Systems ... Slide — 8
 - Phase Behavior — PT Diagram — Hydrocarbon Systems ... Slide — 9
 - Phase Behavior — PT Diagram — Black Oil Reservoir Fluid ... Slide — 10
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid .. Slide — 11
 - Phase Behavior — PT Diagram — Retrograde Gas (Condensate) Reservoir Fluid Slide — 12
 - Phase Behavior — PT Diagram — Wet Gas Reservoir Fluid ... Slide — 13
 - Phase Behavior — PT Diagram — Dry Gas Reservoir Fluid .. Slide — 14
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid ... Slide — 11
 - Phase Behavior — PT Diagram — Multi-Component Systems ... Slide — 8
 - Phase Behavior — PT Diagram — Hydrocarbon Systems ... Slide — 9
 - Phase Behavior — PT Diagram — Black Oil Reservoir Fluid ... Slide — 10
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid .. Slide — 11
 - Phase Behavior — PT Diagram — Retrograde Gas (Condensate) Reservoir Fluid Slide — 12
 - Phase Behavior — PT Diagram — Wet Gas Reservoir Fluid ... Slide — 13
 - Phase Behavior — PT Diagram — Dry Gas Reservoir Fluid .. Slide — 14
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid ... Slide — 11
 - Phase Behavior — PT Diagram — Multi-Component Systems ... Slide — 8
 - Phase Behavior — PT Diagram — Hydrocarbon Systems ... Slide — 9
 - Phase Behavior — PT Diagram — Black Oil Reservoir Fluid ... Slide — 10
 - Phase Behavior — PT Diagram — Volatile Oil Reservoir Fluid .. Slide — 11
 - Phase Behavior — PT Diagram — Retrograde Gas (Condensate) Reservoir Fluid Slide — 12
 - Phase Behavior — PT Diagram — Wet Gas Reservoir Fluid ... Slide — 13
 - Phase Behavior — PT Diagram — Dry Gas Reservoir Fluid .. Slide — 14
 - Phase Behavior — Questions to Consider (Reservoir Fluids) ... Slide — 25

PVT Applications

- PVT Applications — Orientation ... Slide — 27
- PVT Applications — Starter Discussion — Phase Diagrams ... Slide — 28
- PVT Applications — Reservoir Fluids — Phase Diagrams .. Slide — 29
- PVT Applications — Reservoir Fluids ... Slide — 30
- PVT Applications — Typical Compositions of Reservoir Fluids ... Slide — 31
- PVT Applications — PT Diagram (Black Oil) .. Slide — 32
- PVT Applications — PT Diagram (VO/GC) .. Slide — 33

PVT Properties (Reservoir Fluids)

- PVT Properties — Orientation ... Slide — 35
- PVT Properties — Dry Gases ... Slide — 36-46
 - Physical Properties of Gases .. Slide — 38
 - z vs. p_T and p_T (Dry Gas Case) ... Slide — 39
 - Gas Compressibility (Dry Gas Case) [Matter] ... Slide — 40
 - Gas Compressibility (gas case) [DAK-EOS] .. Slide — 41
 - Gas Formation Volume Factor (B_g) .. Slide — 42
- PVT Properties — Black Oils ... Slid
 - Oil Formation Volume Factor [Standing Correlation] .. Slide — 47-48
 - Oil Formation Volume Factor [Standing Correlation] .. Slide — 47-48
 - Oil Compressibility [Definition and Correlations] .. Slide — 53-55
 - Oil Viscosity [Correlations] ... Slide — 56-57
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Gas Material Balance:
- Material Balance — Orientation/Historical Perspectives ... Slides — 2-5
- Material Balance — Orientation .. Slide — 2
- Material Balance — Historical Perspectives .. Slide — 3
- Material Balance — Petroleum Reservoirs .. Slide — 4
- Material Balance — Average Reservoir Pressure .. Slide — 5
- Material Balance Relations ... Slides — 6-8
- Material Balance — General Gas Material Balance .. Slide — 6
- Material Balance — "Dry Gas" Material Balance .. Slide — 6
- Material Balance — "Abnormal Pressure" Material Balance ... Slide — 7
- Material Balance — "Water Influx" Material Balance .. Slide — 8
- Material Balance Examples ... Slides — 9-12
- Material Balance — Volumetric Gas Reservoir Case .. Slide — 9
- Material Balance — Abnormally-Pressured Gas Reservoir Case ... Slide — 10
- Material Balance — Water Influx Gas Reservoir Case .. Slide — 11-12

Pressure Transient Analysis:

Orientation — Pressure Transient Analysis:
- Be familiar with the objectives of Pressure Transient Analysis ... Slide — 2-13
- Be familiar with the input data required for Pressure Transient Analysis ... Slide — 2
- Be familiar with the results of Pressure Transient Analysis (PTA) interpretation .. Slide — 2
- Be familiar with PTA diagnostic examples .. Slide — 3
- Be familiar with static data required for PTA (PVT, Reservoir Properties, Well Completion) Slide — 4
- Be familiar with the issues related to production histories used for the analysis of pressure and rate data Slide — 5
- Be familiar with a tight gas example for PTA and Production Analysis .. Slides — 6-7
- Be familiar with the production pressures and rates for a tight gas reservoir case .. Slide — 6
- Be familiar with an example of PTA for a tight gas reservoir case ... Slide — 7
- Be familiar with the derivation of well deliverability (circa 1935) ... Slide — 8
- Be familiar with the concept of the "4-point" well deliverability test ... Slide — 9
- Be familiar with the layout of a typical reservoir/well/facilities system (after Fonseca) Slide — 10
- Be familiar with "next advances" expected in PTA and Production Analysis .. Slide — 11-12
- Be familiar with the "Questions to Consider" for Pressure Transient Analysis (Orientation for PTA) Slide — 13

Basic Concepts/Processes — Pressure Transient Analysis:
- Basic Concepts/Processes — Pressure Transient Analysis .. Slides — 14-24
- Be familiar with tubular system schematics ... Slide — 15
- Be familiar with an example "drill-stem test" ... Slide — 16
- Be familiar with an example of a "semilog" drawdown test plot ... Slide — 17
- Be familiar with an example of a "log-log" drawdown test plot ... Slide — 18
- Be familiar with an example of a "semilog" buildup test plot ... Slide — 19
- Be familiar with the flow regimes encountered in pressure transient analysis (WBS, IARF, fractured wells) Slide — 20
- Be familiar with the properties that can be obtained from a pressure transient test Slide — 21
- Be familiar with the common plots/flow regimes typical for a pressure transient test Slide — 22
- Be familiar with the "Questions to Consider" for Pressure Transient Analysis (Challenges for PTA) Slide — 23

Pressure-Distance Plots — Pressure Transient Analysis:
- Pressure-Distance Plots — Pressure Transient Analysis ... Slides — 25-36
- Be familiar with and be able to apply the "radius of investigation" relation for transient radial flow Slide — 26
- Be familiar with and be able to apply the "pressure distribution" solutions for radial flow Slides — 26-27
- Be familiar with and be able to apply the "pseudo-steady-state flow" concept ... Slides — 28-30
- Be familiar with the schematic of reservoir pressure for various flow conditions (radial flow) Slides — 31-35
 - Constant rate, transient radial flow behavior [log(r) format] ... Slide — 31
 - Log-linear rate decline, transient radial flow behavior [log(r) format] .. Slide — 32
 - Constant wellbore pressure, transient radial flow behavior [log(r) format] Slide — 33
 - Constant rate, transient radial flow behavior [Cartesian r format] ... Slide — 34
 - Constant wellbore pressure, transient radial flow behavior [Cartesian r format] Slide — 35
- Be familiar with the "Questions to Consider" for Reservoir Pressure Trends .. Slide — 36
Self-Study Objectives: Analysis of Reservoir Performance [Blasingame]

Pressure Transient Analysis: (Continued)

Basic Analysis Plots — Pressure Transient Analysis:
- Be familiar with and be able to apply models for "fractured wells" ... Slides — 53-58
- Be familiar with and be able to apply models for "unfractured wells" (radial flow) (+the skin factor) .. Slides — 50-52

PTA Model-based Analysis — Pressure Transient Analysis:
- Be familiar with the "Questions to Consider" for Conventional PTA Plots .. Slide — 47

PTA Type Curves — Pressure Transient Analysis:
- Be familiar with the "Questions to Consider" for Reservoir Models .. Slide — 63
- Be familiar with the "Questions to Consider" for PTA Type Curves .. Slide — 76

PTA Field Examples — Pressure Transient Analysis:
- Unfractured oil well (SPE 11463) — Infinite-Acting Radial Flow (IARF) ... Slide — 78
- Unfractured oil well (SPE 12777) — Infinite-Acting Radial Flow (IARF) .. Slide — 79
- Unfractured oil well (SPE 13054) — Dual Porosity, Infinite-Acting Radial Flow (IARF) Slide — 80
- Unfractured oil well (SPE 18160) — Dual Porosity, Infinite-Acting Radial Flow (IARF) Slide — 81
- Fractured gas well (SPE 9975 — Well 5) — Hydraulically fractured gas well .. Slide — 82
- Fractured gas well (SPE 9975 — Well 10) — Hydraulically fractured gas well .. Slide — 83
- Fractured gas well (SPE 9975 — Well 12) — Hydraulically fractured gas well .. Slide — 84
- Fractured oil well (SPE 103204 — Well 207) — Pressure fall-off test ... Slide — 85
- Fractured oil well (SPE 103204 — Well 5408) — Pressure fall-off test ... Slide — 86
- Fractured oil well (SPE 103204 — Well 2403) — Pressure fall-off test ... Slide — 87

Petroleum Engineering 663 — Formation Evaluation and Analysis of Reservoir Performance
Topical Self-Study Guide— Analysis of Reservoir Performance [Blasingame]
Self-Study Objectives:
Analysis of Reservoir Performance [Blasingame]

Production Analysis:

Orientation — Production Analysis:
- Be familiar with Semilog, and Log-Log plotting coordinates. Slides — 1-16
- Be familiar with the Objectives of Production Data Analysis. Slide — 2-3
- Be familiar with the data requirements (and issues) for production data analysis. Slide — 4
- Be familiar with the give production data example (SPE 15482). Slide — 5
- Be familiar with the required static data input for production analysis. Slide — 6
- Be familiar with the common issues with production data. Slide — 7
- Be familiar with the influence/impact of "allocated data" on production analysis. Slides — 8-9
- Be familiar with the influence/impact of a completion on the analysis of production data. Slides — 10-12
- Be familiar with the influence/impact of using surface rather than bottomhole pressure data. Slides — 13-15

Integration of Results — Production Analysis:
- Be familiar with the "Reservoir Integration" flowchart presented by Weber. Slide — 49
- Be familiar with the PTA topics which are relevant to well performance analysis. Slide — 40
- Be familiar with sandstone depositional systems. Slides — 31-32
- Be familiar with carbonate depositional systems. Slide — 33
- Be familiar with the Weber Example core: Permeability Characterization/Correlation. Slide — 34
- Be familiar with the Field Case: Womack Hill — Comparison of k_{WPA} and k_{WPS}. Slide — 35
- Be familiar with the Field Case: Tordillo Field — Comparison of h and $OOIP_{WPA}$. Slide — 36
- Be familiar with the Field Case: Tordillo Field — Comparison of k and k_{WPS}. Slide — 37
- Be familiar with the Field Case: Santa Barbara — k_{WPA}, k_{PTA} with $k_{log-mean}$. Slide — 38

Integration of Geology — Production Analysis:
- Be familiar with the influence/impact of "allocated data" on production analysis. Slide — 8-9
- Be familiar with the influence/impact of a completion on the analysis of production data. Slide — 10-12
- Be familiar with the influence/impact of using surface rather than bottomhole pressure data. Slide — 13-15

Pressure Transient Analysis — Overlap with Production Analysis — Production Analysis
- Be familiar with the current library of PTA models. Slide — 41
- Be familiar with the philosophy and objectives of PTA. Slides — 42-46
- Be familiar with the "Arun Field" example comparison of $(kh)_{PTA}$ versus $(kh)_{PA}$. Slide — 47
- Be familiar with the topics/issues related to Reservoir Simulation which are relevant to PA and PTA. Slide — 48
- Be familiar with the "Reservoir Integration" flowchart presented by Weber. Slide — 49
- Be familiar with the schematics "Reservoir Scales" (by Weber) and "Scaling-Up Process" (by Lasseter). Slide — 50

History of Production Analysis — Production Analysis:
- Be familiar with the historical milestones for Production Analysis. Slide — 52
- Be familiar with the historical milestones for Production Analysis. Slide — 53
- Be familiar with historical Production Analysis methods — 1920's. Slides — 54-58
 - Early Data Analysis Plots — Reserves (EUR) versus Average Flowrate (Cartesian). Slide — 56
 - Rate-Time Plots: Cartesian, Semilog (rate), and Log-log plots. Slides — 57-58
- Be familiar with historical Production Analysis methods — 1940's. Slides — 59-63
 - Arps' (Empirical) Rate Relations — Exponential, Hyperbolic, and Harmonic Rate Relations. Slides — 60-61
 - Be familiar with and be able to derive the Arps' Exponential Rate Relation. Slide — 62
 - Arps' Example. Slide — 63
- Be familiar with historical Production Analysis methods — 1960's. Slides — 64-72
 - Fetkovich: Empirical methods ("depletion" stem (Arps' empirical rate-time relations)). Slides — 65-66
 - Fetkovich: Analytical methods ("transient" (analytical) "stems). Slide — 67
 - Fetkovich: Composite Type Curve ("transient" (analytical) + "depletion" (Arps' empirical) "stems). Slides — 68-70
 - Fetkovich-Carter: Type Curve for gas flow applications ($p_d = constant$). Slide — 71
Production Analysis: (continued)

History of Production Analysis — Production Analysis
- Be familiar with historical Production Analysis methods — 1980's .. Slides — 72-84
- Superposition — Van Everdingen and Meyer Method (rigorous superposition) .. Slides — 73-74
- Window Analysis — Athianchagorn, Horne, and Kikani Method ... Slide — 75
- Pseudosteady-State Flow Relations — Rate Normalization and Material Balance Time ... Slides — 76-82
- Palacio/Blasingame Type Curve — Fetkovich TC, Auxiliary Functions and Material Balance Time Slides — 83-84
- Be familiar with historical Production Analysis methods — 2000's .. Slides — 85-92
- Orientation to Modern Production Analysis .. Slide — 86
- Loebel Well Example (from SPE 15482) ... Slides — 87-91
- Perspectives on the Future of Production Analysis .. Slide — 92

Basic Methods for Production Analysis — Production Analysis
- Basic Methods for Production Analysis — Production Analysis .. Slides — 93-114
- Be familiar with the Basic Analysis Tools for Production Analysis (PA) [Orientation Page] .. Slide — 94
- Arps Plot: Semi-Analytical Rate-Time Analysis: .. Slides — 95-98
 - Be familiar with and be able to use a plot of log(rate) versus time to estimate EUR ... Slides — 96-98
 - Be familiar with and be able to apply the Arps' rate-time relations .. Slide — 96
- EUR Plot: Semi-Analytical Rate-Cumulative Analysis: ... Slides — 99-103
 - Be familiar with and be able to use a plot of rate versus cumulative production to estimate EUR Slides — 101-103
 - Be familiar with and be able to apply the Arps' rate-cumulative relations ... Slide — 100
- Fetkovich (Log-Log) Plot: Type Curve Analysis: (constant pwf) ... Slides — 104-107
 - Be familiar with and be able to use a plot of log(rate) versus log(time) (i.e., "Fetkovich" type curve) Slide — 107
- Bubba Approach: Analytical Gas Solution: (constant pwf) ... Slides — 108-114
 - Be familiar with and be able to use the "Bubba" plot (Gp versus square of Gp) ... Slides — 108-114
 - Be familiar with and be able to use the "Bubba" rate-cumulative relation to estimate EUR .. Slides — 111-112

Advanced Analysis Methods for Production Analysis — Production Analysis
- Advanced Analysis Methods for Production Analysis — Production Analysis .. Slides — 115-128
- Be familiar with the Advanced Analysis Concepts for Production Analysis (PA) [Orientation Page] Slide — 115
- Exact Superposition Formulation: (Reservoir Model)
 - Be familiar with and be able to apply the (exact) "superposition" relations for flowrate and pressure Slide — 118
- Superposition Formulation for Pseudosteady-State:
 - Be familiar with and be able to apply the "Black Oil" PSS Equations .. Slide — 120
 - Be familiar with and be able to apply the "Dry Gas" PSS Equations ... Slide — 121
- Auxiliary Functions:
 - Be familiar and be able to apply the "auxiliary" plotting functions for PA type curve sequence Slides — 122-123
- Assumptions, Limitations, and Practical Considerations:
 - Be familiar with the data requirements for performing a modern PA sequence ... Slide — 125
 - Be familiar with the limitations for performing a modern PA sequence ... Slides — 124-127
 - Be familiar and be able to apply the "multifield" Material Balance Time ... Slide — 128
- Appendix — Library of Decline Type Curves
 - Be familiar with and be able to use the "Decline Type Curves" included in this library Slides — 129-141

Conclusions Guidelines/Pitfalls/Recommendations — Production Analysis
- Conclusions Guidelines/Pitfalls/Recommendations — Production Analysis .. Slides — 142-149
- Be familiar with the available PA tools and the issues at present ... Slide — 143
- Be familiar with the practical guidelines for PA .. Slide — 144
- Be familiar with the "pitfalls" for PA (pressure and flowrate issues) .. Slide — 145
- Be familiar with the recommendations/caveats for PA (pressure/flowrate issues, data mgmt., etc.) Slides — 146-147
- Be familiar with the "reality checks" for PTA/PA (volume averaging, model limitations, etc.) Slide — 148
- Be familiar with references for Production Analysis .. Slide — 149

Semi-Analytical Rate Relations for Oil and Gas Flow:
- Orientation — Historical Perspectives .. Slides — 1-11
 - "Backpressure" equation ... Slide — 3
 - Arps relations (exponential, hyperbolic, and harmonic) ... Slides — 4-9
 - Derivation of Arps' exponential decline relation .. Slide — 10
 - Validation of Arps' hyperbolic decline relation (Camacho and Raghavan) .. Slide — 11
- Specialized Gas Flow Relations .. Slides — 12-19
 - Fetkovich Gas Flow Relation ... Slides — 14-15
 - Knowles-Ansah-Buba Gas Flow Relation ... Slides — 16-19
- Specialized Oil Flow Relations .. Slides — 20-25
 - Fetkovich Oil Flow Relation .. Slides — 20-25
Semi-Analytical Rate Relations for Oil and Gas Flow: (continued)

- Inflow Performance Relations (IPR) ... Slides — 26-37
 - Early work (for rationale) .. Slides — 28-29
 - Oil IPR and Solution-Gas Drive IPR .. Slides — 30-34
 - Gas Condensate IPR ... Slides — 35-37

Reserves Estimation in Unconventional Reservoirs — New Rate-Time Relations:

- SPE 116731 (Exponential vs. Hyperbolic Decline in Tight Gas Sands) Slides — 2-10
 - Definitions \(D(t) \) and \(b(t) \) diagnostics functions ... Slide — 4
 - Introduction to "power-law exponential" rate decline model Slide — 5
 - Illustration of diagnostics/behavior for the "power-law exponential" rate decline model Slides — 6-10
- SPE 123298 (A Simple Methodology for Direct Estimation of Gas-in-place and Reserves) ... Slides — 11-15
 - Presentation of the simplified gas rate analysis relation Slides — 12-13
 - Illustration/demonstration of the simplified gas rate analysis relation Slides — 14-15
- SPE 125031 (Decline Curve Analysis for HP/HT Gas Wells: Theory and Applications) Slides — 16-23
 - Presentation of analytical gas flow relations — functions and diagnostic plots Slides — 17-19
 - Demonstration of these analytical gas flow relations .. Slides — 20-24
- SPE 135616 (Hybrid Rate-Decline Models for the Analysis of Production Performance) Slides — 24-34
 - Presentation of a new series of gas flow models for unconventional reservoirs Slides — 25-27
 - Presentation of a new "\(\beta \)-derivative" analysis function Slides — 28-29
 - Demonstration plots for these new rate-decline models Slides — 29-34