Module for:
Analysis of Reservoir Performance

Pressure Transient Testing

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
(979) 845-2292 — t-blasingame@tamu.edu

(04 December 2002)
Pressure Transient Testing

● Orientation — This module focuses on familiarization with deliverability tests and the analysis and interpretation pressure transient test data. The following issues must be clear: test design, data acquisition/data quality control, and test execution are critical activities.

● Deliverability Testing:
 ■ "4-point" tests are appropriate (analyze as well tests).
 ■ Isochronal/modified isochronal testing is difficult.

● Pressure Transient Test Analysis/Interpretation:
 ■ Conventional analysis — specialized plots.
 ■ Model identification — type curves, simulation, etc.
 ■ Test design — simplicity is the key.
Deliverability Testing — Basics

a. "Standard" 4-point test deliverability test — note that the rates increase (to protect the reservoir).

b. "Isochronal" test sequence — note that each "buildup" is required to achieve \(p_i \).

c. Modified "Isochronal" test sequence — note that each "buildup" is *not* required to achieve \(p_i \).

d. Governing equations for "deliverability" test analysis/interpretation.

\[
q = C(\bar{p}^2 - p_{wf}^2)^n
\]

\[
\Delta p^2 = \bar{p}^2 - p_{wf}^2 = aq + bq^2
\]

\[
q = C[p_p(\bar{p}) - p_p(p_{wf})]^n
\]

\[
\Delta p_p = p_p(\bar{p}) - p_p(p_{wf}) = aq + bq^2
\]
Deliverability Testing — Orientation

\[
q_{sc} = C \left(\bar{p}_R - p_{wf} \right)^n = C(\Delta p)^n
\]

where

- \(q_{sc} \) = flow rate at standard conditions, MMscfd
- \(\bar{p}_R \) = average reservoir pressure obtained by shut-in of the well to complete stabilization, psia
- \(p_{wf} \) = flowing sandface pressure, psia
- \(\Delta p \) = \(\bar{p}_R - p_{wf} \)
- \(C \) = a coefficient which describes the position of the stabilized deliverability line
- \(n \) = an exponent which describes the inverse of the slope of the stabilized deliverability line.

a. Basic "pressure-squared" relation that is presumed to describe gas flow — analogous form can be derived from steady-state flow theory (Darcy's law).

\[
\Delta \bar{p} = \bar{p}_R - \bar{p}_{wf} = a' q_{sc} + b' q_{sc}^2
\]

where

- \(a' q_{sc} \) = pressure-squared drop due to laminar flow and wellbore effects
- \(b' q_{sc}^2 \) = pressure-squared drop due to intermittent-turbulent flow effects.

\[
\Delta \bar{p} = \bar{p}_R - \bar{p}_{wf} = a q_{sc} + b q_{sc}^2
\]

where

- \(\bar{p}_R \) = pseudo-pressure corresponding to \(\bar{p}_R \)
- \(\bar{p}_{wf} \) = pseudo-pressure corresponding to \(p_{wf} \)
- \(a q_{sc} \) = pseudo-pressure drop due to laminar flow and well conditions
- \(b q_{sc}^2 \) = pseudo-pressure drop due to inertial-turbulent flow effects.

c. Traditional "deliverability" plot — probably derived from empirical plotting of data.

d. Modified "deliverability" plot — note that \(b q_{sc}^2 \) must be known (... need alternative approach).
Deliverability Testing — 4-Point Tests

- Basic deliverability test analysis — note the difference in the simplified and "LIT" cases.

- "Standard" 4-point test deliverability test — note that the rates increase (to protect the reservoir).

Discussion:
- The value "value" of deliverability tests is in the process — the data can be be more effectively analyzed as "well test data" than as deliverability data. However, deliverability analysis can serve as a quality control (data checking).
Isochronal Test Analysis — Note the multiple trends.

\[\frac{\Delta p}{q} = \frac{p_p(P_0) - p_p(P_w)}{q} = a_t + bq \]

\[a_t = \frac{1.422 \times 10^6 T}{k_s h} \left(\frac{r_d}{r_w} \right)^{3/4} + s \]

\[b = \frac{1.422 \times 10^6 D_T}{k_s h} \]

\[r_d = \sqrt{\frac{k_s f}{377 \phi \mu_c c_i}} \]
Well Test Analysis — Multirate Testing

Summary of Well Test Analysis (Conventional Approach)

Well CII-018 (A-098) [Test Date: 7 August 1992]

Flowrate, q : 57000 MSCF/day

p_{wf} at $\Delta t=0$: 2445 psia

Reservoir Condition : Homogeneous

Well Condition : Wellbore Storage & Skin

Boundary Condition : Infinite

Wellbore Storage Coeff., c_{sf} : 0.28 STB/psi

c_{sf}/c_{wf} : 0.46

α_D : 469

Total Skin Factor, s' : 5.71

Mechanical Skin Factor, s : 2.86

Non Darcy Coefficient, D : 5×10^{-5} (MSCF/day)$^{-1}$

Permeability-Thickness, kh : 6170 md-ft

Permeability, k : 9.49 md

Mobility, k/μ : 233 md/cp

c. Results summary — note that non-Darcy flow, changing wellbore storage, and an infinite-acting reservoir system were considered in this analysis.

(04 December 2002)
Well Test Analysis — "Well Interference"

a. "Well Interference" plot — note the linear trend through the data functions (confirms interference).

b. Log-log "summary plot" — note the corrected and uncorrected data (well interference).

c. Horner semilog plot — note the two semilog trends confirm the radial composite model.

Discussion:

- "Well interference" is much more common than previously thought — and we must recognize the characteristic behavior on each plot:
 - Log-log plot (b)
 - Semilog plot (c)
 - Specialized plot (a)
Well Test Analysis — Basic Plots

a. Log-log "preliminary analysis" plot — wellbore storage and radial flow (C_s, k).

b. Cartesian "early-time" plot — used to analyze wellbore storage (p_0, C_s).

c. Semilog "middle-time" plot — used to analyze radial flow behavior (k, s).

d. Horner "middle-time" plot — used to analyze radial flow behavior (k, s, p^*).

e. Cartesian "Arps" plot — used to estimate average reservoir pressure.

f. Log-log "summary" plot — summary of all analysis (C_s, k, s, A, etc.).
Well Test Analysis — Basic Plots (1)

Example: "Preliminary Analysis" (log-log).

(04 December 2002)
Well Test Analysis — Basic Plots (2)

Example: "Horner Semilog Analysis" (semilog).
Well Test Analysis — Basic Plots (3)

Log-log Summary Plot -- Lee Text Example 2.2
(Including Simulated Performance)

Data for Lee Example 2.2:
Reservoir Properties:
- \(c = 17.0 \times 10^{-6} \) psia\(^{-1} \)
- \(r_w = 0.198 \) ft
- \(h = 69 \) ft
- \(q = 0.039 \) (fraction)

Oil Properties:
- \(B_o = 1.136 \) RB/STB
- \(\mu_o = 0.8 \) cp

Production Parameters:
- \(q_o = 250 \) STB/D
- \(t_p = 13,630 \) hrs
- \(P_w(\Delta t = 0) = 3534 \) psia

Average Pressure Estimates:
- \(p_{avg} \) Muskat (1 term) = 4408.5 psia
- \(p_{avg} \) Muskat (2 term) = 4408.9 psia
- \(p_{avg} \) RHM(reg) = 4422.8 psia
- \(p_{avg} \) MBH (Lee text) = 4411.0 psia

Results for Lee Text Example 2.2:
- \(k = 7.65 \) md (forced)
- \(s = 5.79 \)
- \(C_o = 5626 \) (Cde\(^{0.6} = 6 \times 10^6 \))
- \(A = 139.7 \) acres (Well Centered in a Square)

Example: "Analysis Summary Plot" (log-log).
Well Test Analysis — Work Relations

Example Analysis: (Lee text (1st edition), Example 2.2)

Given Data: (Lee text (1st edition), Example 2.2)

These data are taken from Example 2.2 in the Lee text, Well Testing. These data are for a pressure "buildup" test run on an oil (liquid) well.

Reservoir properties:
\[\phi = 0.039 \]
\[r_w = 0.198 \text{ ft} \]
\[c_t = 17 \times 10^{-6} \text{ psi}^{-1} \]
\[h \text{ } = 69 \text{ ft} \]

Oil properties:
\[B_o = 1.136 \text{ RB/STB} \]
\[\mu_o = 0.8 \text{ cp} \]

Production parameters:
\[p_{wfb} (\Delta t = 0) = 3534 \text{ psia} \]
\[q_o = 250 \text{ STB/D} \]
\[t_p = 13,630 \text{ hr} \]

Test Data and Data Functions:

<table>
<thead>
<tr>
<th>(\Delta t), hr</th>
<th>(p_{wfb}), psia</th>
<th>(p_{wfb}), psia</th>
<th>(\Delta p_{i}), psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>3680</td>
<td>3614.6</td>
<td>146</td>
<td>149.471</td>
<td>80.6018</td>
<td>75.6076</td>
</tr>
<tr>
<td>0.2</td>
<td>3723</td>
<td>3636.35</td>
<td>189</td>
<td>166.252</td>
<td>102.353</td>
<td>87.067</td>
</tr>
<tr>
<td>0.3</td>
<td>3800</td>
<td>3678.2</td>
<td>266</td>
<td>213.02</td>
<td>144.204</td>
<td>121.713</td>
</tr>
<tr>
<td>0.4</td>
<td>3866</td>
<td>3716.99</td>
<td>332</td>
<td>236.405</td>
<td>182.994</td>
<td>146.215</td>
</tr>
<tr>
<td>0.5</td>
<td>3920</td>
<td>3752.26</td>
<td>386</td>
<td>247.26</td>
<td>218.26</td>
<td>164.214</td>
</tr>
<tr>
<td>1</td>
<td>4103</td>
<td>3884.18</td>
<td>569</td>
<td>238.045</td>
<td>350.182</td>
<td>202.622</td>
</tr>
<tr>
<td>2</td>
<td>4250</td>
<td>4033.15</td>
<td>716</td>
<td>156.332</td>
<td>499.154</td>
<td>199.547</td>
</tr>
<tr>
<td>4</td>
<td>4320</td>
<td>4160.81</td>
<td>786</td>
<td>68.393</td>
<td>626.813</td>
<td>156.056</td>
</tr>
<tr>
<td>6</td>
<td>4340</td>
<td>4217.42</td>
<td>806</td>
<td>40.8058</td>
<td>683.419</td>
<td>122.572</td>
</tr>
<tr>
<td>7</td>
<td>4344</td>
<td>4235.22</td>
<td>810</td>
<td>39.942</td>
<td>701.223</td>
<td>112.548</td>
</tr>
<tr>
<td>8</td>
<td>4350</td>
<td>4249.2</td>
<td>816</td>
<td>34.6642</td>
<td>715.203</td>
<td>101.564</td>
</tr>
<tr>
<td>12</td>
<td>4364</td>
<td>4285.29</td>
<td>830</td>
<td>32.6308</td>
<td>751.286</td>
<td>79.3411</td>
</tr>
<tr>
<td>16</td>
<td>4373</td>
<td>4306.14</td>
<td>839</td>
<td>29.56</td>
<td>772.142</td>
<td>67.2115</td>
</tr>
<tr>
<td>20</td>
<td>4379</td>
<td>4320.14</td>
<td>845</td>
<td>32.2431</td>
<td>786.135</td>
<td>60.2947</td>
</tr>
<tr>
<td>24</td>
<td>4384</td>
<td>4330.38</td>
<td>850</td>
<td>27.252</td>
<td>796.375</td>
<td>55.0219</td>
</tr>
<tr>
<td>30</td>
<td>4393</td>
<td>4342.03</td>
<td>859</td>
<td>24.4973</td>
<td>808.032</td>
<td>49.6535</td>
</tr>
<tr>
<td>40</td>
<td>4398</td>
<td>4355.43</td>
<td>864</td>
<td>17.3321</td>
<td>821.428</td>
<td>43.0651</td>
</tr>
<tr>
<td>50</td>
<td>4402</td>
<td>4364.36</td>
<td>868</td>
<td>15.3399</td>
<td>836.357</td>
<td>38.0267</td>
</tr>
<tr>
<td>60</td>
<td>4405</td>
<td>4370.89</td>
<td>871</td>
<td>15.3939</td>
<td>836.888</td>
<td>35.9415</td>
</tr>
<tr>
<td>72</td>
<td>4407</td>
<td>4376.74</td>
<td>873</td>
<td>13.712</td>
<td>842.745</td>
<td>33.9736</td>
</tr>
</tbody>
</table>

Graphical Analysis
(Example 2.2, Lee Text (1st edition))

- Early Time Cartesian Analysis: \(p_{ws} \) is plotted versus \(\Delta t \)
 \[C_s = \frac{q_{sur} B_o}{24 m_{wbs}} \]
- "Horner" relations: \(p_{ws} \) is plotted versus \(\log \left(\frac{t_p + \Delta t}{t_p} \right) \)
 \[s = 1.1513 \left(\frac{p_{ws,1hr} - p_{wfb}}{m} \right) - \log \left(\frac{k}{q_{tar} \mu_o} \right) + 3.2275 \]
- "MDH" relations: \(p_{ws} \) is plotted versus \(\log (\Delta t) \)
 \[k = 162.6 \frac{q_{B_i}}{m h} \]
 \[s = 1.1513 \left(\frac{p_{ws,1hr} \Delta t}{m} \right) - \log \left(\frac{k}{q_{tar} \mu_o^2} \right) + 3.2275 \]
- "Modified Muskat" plotting functions: \(p_{ws} \) is plotted versus \(\frac{d}{d \Delta t} \left[p_{ws} \right] \) to determine \(\tilde{p} \)
 - "Modified Muskat" Pressure Equation:
 \[\tilde{p} = \frac{p_{ws} - \tilde{p}}{\frac{d}{d \Delta t} \left[p_{ws} \right]} \]
 - "Modified Muskat" Pressure Derivative Equation:
 \[\frac{d}{d \Delta t} \left[p_{ws} \right] = - a \tilde{p} \frac{e^{\left[-b \Delta t\right]}}{\Delta t} \]
 - "Modified Muskat" Plotting Relation:
 \[p_{ws} = \tilde{p} - \frac{d}{d \Delta t} \left[p_{ws} \right] \]

● Given data — Lee text (1st edition), Example 2.2.
● Working relations — Lee text (1st edition), Example 2.2.

(04 December 2002)
a. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dr}, p_{Dd}).

b. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dr}, p_{Dd}, p_{Dr1}).

c. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dr}, p_{Dd}).

d. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dr}, p_{Dd}).

e. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dh}, p_{Ddh}, p_{Dir}).

f. Type Curve: Radial flow with wellbore storage and skin effects (p_{Dh}, p_{Dir}).
Type Curve: "Gringarten-Bourdet" (p_D, p_{Dd}).
Well Test Analysis — *WBS Type Curves (2)*

- **Type Curve:** "Second Derivative) \((p_D, p_{Ddd})\).
Well Test Analysis — WBS Type Curves (3)

- Type Curve: "Integral Functions" (ρ_{Di}, ρ_{Did}).

(04 December 2002)

PETE 689 (02C) — Pressure Transient Testing

Well Test Analysis — Bounded Reservoir

a. Type Curve for sealing faults (p_{Dd}).

b. Type Curve for conductive (leaky) faults (p_{Dd}).

c. Type Curve for pressure buildup test in a closed rectangular reservoir (p_{Dd}).

d. Type Curve for pressure buildup test in a closed rectangular reservoir (p_{Did}).

(04 December 2002) PETE 689 (02C) — Pressure Transient Testing Slide — 18
Type Curves for Sealing Faults
(Infinite-Acting Homogeneous Reservoir)

- **Type Curve:** "Sealing Faults" (p_{Dd}).
Well Test Analysis — Bounded Reservoir (2)

Type Curve: "Closed Reservoir" (Buildup Only) \((p_{Dd})\).

- **Model Legend:** Vertical Well in a Rectangular Homogeneous Reservoir
Well Test Analysis — Composite Systems

a. Composite Reservoir ($\eta = 1 \times 10^{-3}$).

b. Composite Reservoir ($\eta = 1 \times 10^{-2}$).

c. Composite Reservoir ($\eta = 1 \times 10^{-1}$).

d. Composite Reservoir ($\eta = 1 \times 10^{0}$).

e. Composite Reservoir (all η cases).
Type Curve for Well in a Radial Composite Reservoir (All η_r Cases)
(Infinite-Acting Homogeneous Reservoir)

Solution from:

Variables:
- $R_{1D} = r_i / r_w = 500$
- $\eta_r = \alpha f$
- $\phi = (\phi C_1) / (\phi C_2)$
- $\lambda = (k_r / \mu_1) / (k_r / \mu_2)$

Legend:
- $\eta_r = 1$
- $\eta_r = 1 \times 10^{-1}$
- $\eta_r = 1 \times 10^{-2}$
- $\eta_r = 1 \times 10^{-3}$

● Type Curve: all η_r cases (Tang-Brigham).

(04 December 2002) P E T E 6 8 9 (0 2 C) — P r e s s u r e T r a n s i e n t T e s t i n g S l i d e — 2 2
Well Test Analysis — Fractured Wells

a. Type Curve: $C_{ID} =$ various, no C_{DI} cases.

b. Type Curve: $C_{ID} =$1, $C_{DI} =$ various.

c. Type Curve: $C_{ID} =$2, $C_{DI} =$ various.

d. Type Curve: $C_{ID} =$5, $C_{DI} =$ various.

e. Type Curve: $C_{ID} =$10, $C_{DI} =$ various.

f. Type Curve: $C_{ID} =$1$x10^3$, $C_{DI} =$ various.

(04 December 2002)
Well Test Analysis — *Fractured Wells* (1)

- **Type Curve**: Various C_{FD} (Cinco-Samaniego).

(04 December 2002)
"Pseudoradial flow" skin factor correlation for a fractured well (Cinco-Samaniego).

Data From:
Well Test Analysis — Fractured Wells (3)

- Type Curve: $C_{fD}=2$, various C_{Df} cases.
Well Test Analysis — Fractured Wells (4)

Type Curve: $C_{fD}=1 \times 10^3$, various C_{Df} cases.
Well Test Analysis — Dual Porosity Reservoirs

Pseudosteady-State Interporosity Flow

- **Type Curve:** \(\omega, \lambda = \text{various}, \) **pss** interporosity flow.

Transient Interporosity Flow

- **Type Curve:** \(\omega, \lambda = \text{various}, \) **transient** interporosity flow.

- **Type Curve:** \(\lambda_{C_{D}} = 1 \times 10^{-4}, \) **pss** interporosity flow.

- **Type Curve:** \(\lambda_{C_{D}} = 1 \times 10^{-1}, \) **pss** interporosity flow.

- **Type Curve:** \(\lambda_{C_{D}} = 1 \times 10^{-4}, \) **transient** interporosity flow.

- **Type Curve:** \(\lambda_{C_{D}} = 1 \times 10^{-1}, \) **transient** interporosity flow.

(04 December 2002)
PETE 689 (02C) — Pressure Transient Testing
Slide — 28
Type Curve: Pseudosteady-State Interporosity Flow (Onur, et al format).
Well Test Analysis — Dual Porosity Reservoirs (2)

Type Curve: Transient Interporosity Flow (Onur, et al format).

Type Curve for an Unfractured Well in an Infinite-Acting Naturally-Fractured Reservoir with NO Wellbore Storage or Skin Effects -- Plotting Format From: paper SPE 23830, Onur, M., and Satman, A.: "New Type Curves to Determine Naturally Fractured Reservoir Parameters"
Type Curve: $\lambda C_D = 1 \times 10^{-4}$, pss interporosity flow.
Type Curve: $\lambda C_D = 1 \times 10^{-4}$, transient interporosity flow.
Well Test Analysis — Scaling

- Pressure transient analysis "sees" the reservoir as a volume-averaged set of properties.
- New solutions/models will also have this view of the reservoir — but, quantifying heterogeneity may (or may not) be possible by the analysis of pressure transient test data.
- Scaling will remain a major issue — regardless of the mechanism used to analyze reservoir performance.

From: Simulator Parameter Assignment and the Problem of Scaling in Reservoir Engineering — Halderson (1986).
(Formation Evaluation and the Analysis of Reservoir Performance)

Module for:
Analysis of Reservoir Performance

Pressure Transient Testing

End of Presentation

T.A. Blasingame, Texas A&M U.
Department of Petroleum Engineering
Texas A&M University
College Station, TX 77843-3116
(979) 845-2292 — t-blasingame@tamu.edu

(04 December 2002)